Slack variety of a polytope and its applications

João Gouveia

C • FCTUC
faculdade de ciências
ETECNOLOGIA
UNIVERSIDADE DE COIMBRA

19th of October 2018 - ICERM Workshop on Real Algebraic Geometry and Optimization

Co-authors: past, present and future

Kanstantsin Pashkovich - University of Waterloo
Richard Z. Robinson - Microsoft
Rekha Thomas - University of Washington
Antonio Macchia - Universitá degli Studi di Bari
Amy Wiebe - University of Washington
Jeffrey Pang - National University of Singapore
Ting Kei Pong - Hong Kong Polytechnic University

Section 1

Polytopes and their realization spaces

Polytopes

A polytope is:
a convex hull of a finite set of points in \mathbb{R}^{n}.

$$
P=\operatorname{conv}\left\{p_{1}, p_{2}, \ldots, p_{v}\right\}
$$

\mathcal{V}-representation

Polytopes

A polytope is:
a convex hull of a finite set of points in \mathbb{R}^{n}.

$$
P=\operatorname{conv}\left\{p_{1}, p_{2}, \ldots, p_{v}\right\}
$$

\mathcal{V}-representation
a compact intersection of half spaces in \mathbb{R}^{n}.

$$
P=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}
$$

$$
\mathcal{H} \text {-representation }
$$

Polytopes

A polytope is:
a convex hull of a finite set of points in \mathbb{R}^{n}.

$$
P=\operatorname{conv}\left\{p_{1}, p_{2}, \ldots, p_{v}\right\}
$$

$$
\mathcal{V} \text {-representation }
$$

a compact intersection of half spaces in \mathbb{R}^{n}.

$P=\left\{x \in \mathbb{R}^{n}: A x \leq b\right\}$
\mathcal{H}-representation

A face of P is its intersection with a supporting hyperplane, and the set of faces ordered by inclusion forms the face lattice of P

Combinatorial class of a polytope

We say that two polytopes are combinatorially equivalent if they have the same face lattice.

Combinatorial class of a polytope

We say that two polytopes are combinatorially equivalent if they have the same face lattice.

Given a combinatorial class of polytopes, we call each polytope in that class a realization of that class.

We will call the the space of all realizations of the combinatorial class of a polytope P the realization space of P.

Combinatorial class of a polytope

We say that two polytopes are combinatorially equivalent if they have the same face lattice.

Given a combinatorial class of polytopes, we call each polytope in that class a realization of that class.

We will call the the space of all realizations of the combinatorial class of a polytope P the realization space of P.

Question: How do we make such an object concrete?

The classic model for the realization space

There is a very direct way of modelling the realizations space.

The classic model for the realization space

There is a very direct way of modelling the realizations space.
Given a d-polytope P define $\mathcal{R}(P)$ to be the set of all $Q \in \mathbb{R}^{d \times v}$ such that the convex hull of their columns is combinatorially equivalent to P.

The classic model for the realization space

There is a very direct way of modelling the realizations space.
Given a d-polytope P define $\mathcal{R}(P)$ to be the set of all $Q \in \mathbb{R}^{d \times v}$ such that the convex hull of their columns is combinatorially equivalent to P.

The classic model for the realization space

There is a very direct way of modelling the realizations space.
Given a d-polytope P define $\mathcal{R}(P)$ to be the set of all $Q \in \mathbb{R}^{d \times v}$ such that the convex hull of their columns is combinatorially equivalent to P.

$$
\mathcal{R}(P)=\left\{\left[\begin{array}{llll}
w_{1} & x_{1} & y_{1} & z_{1} \\
w_{2} & x_{2} & y_{2} & z_{2}
\end{array}\right]: \begin{array}{c}
w, x, y, z \text { are } \\
\text { vertices of a square }
\end{array}\right\}
$$

The classic model for the realization space

There is a very direct way of modelling the realizations space.
Given a d-polytope P define $\mathcal{R}(P)$ to be the set of all $Q \in \mathbb{R}^{d \times v}$ such that the convex hull of their columns is combinatorially equivalent to P.

$$
\mathcal{R}(P)=\left\{\left[\begin{array}{llll}
w_{1} & x_{1} & y_{1} & z_{1} \\
w_{2} & x_{2} & y_{2} & z_{2}
\end{array}\right]: \begin{array}{c}
w, x, y, z \text { are } \\
\text { vertices of a square }
\end{array}\right\}
$$

We can also mod out affine transformations by fixing an affine basis B.

$$
\begin{aligned}
\mathcal{R}(P, B) & =\left\{\left[\begin{array}{llll}
0 & 0 & 1 & x_{1} \\
1 & 0 & 0 & x_{2}
\end{array}\right]: \begin{array}{c}
e_{1}, 0, e_{2}, x \text { are } \\
\text { vertices of a square }
\end{array}\right\} \\
& =\left\{x \in \mathbb{R}^{2}: x_{1}, x_{2} \geq 0, x_{1}+x_{2} \geq 1\right\}
\end{aligned}
$$

Properties of the classic model

These realization spaces are well-studied, and much is known about them.

- They are very natural;

Properties of the classic model

These realization spaces are well-studied, and much is known about them.

- They are very natural;
- They are semialgebraic;

Properties of the classic model

These realization spaces are well-studied, and much is known about them.

- They are very natural;
- They are semialgebraic;
- They are universal even for 4-polytopes [Richter-Gebert 96];

Properties of the classic model

These realization spaces are well-studied, and much is known about them.

- They are very natural;
- They are semialgebraic;
- They are universal even for 4-polytopes [Richter-Gebert 96];
- The modding out of transformations is very basis dependent;

Properties of the classic model

These realization spaces are well-studied, and much is known about them.

- They are very natural;
- They are semialgebraic;
- They are universal even for 4-polytopes [Richter-Gebert 96];
- The modding out of transformations is very basis dependent;
- It is not invariant under duality;

Properties of the classic model

These realization spaces are well-studied, and much is known about them.

- They are very natural;
- They are semialgebraic;
- They are universal even for 4-polytopes [Richter-Gebert 96];
- The modding out of transformations is very basis dependent;
- It is not invariant under duality;
- They are difficult to compute with.

Properties of the classic model

These realization spaces are well-studied, and much is known about them.

- They are very natural;
- They are semialgebraic;
- They are universal even for 4-polytopes [Richter-Gebert 96];
- The modding out of transformations is very basis dependent;
- It is not invariant under duality;
- They are difficult to compute with.

We will present an alternative construction for a model of the realization space that will be suitable to some different applications.

Section 2

Slack variety of a polytope

Slack matrices of polytopes

Let P be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

Slack matrices of polytopes

Let P be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{\nu \times f}$ given by

$$
S_{P}(i, j)=h_{j}\left(p_{i}\right) .
$$

Slack matrices of polytopes

Let P be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{\nu \times f}$ given by

$$
S_{P}(i, j)=h_{j}\left(p_{i}\right)
$$

Regular hexagon.

Slack matrices of polytopes

Let P be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{\nu \times f}$ given by

$$
S_{P}(i, j)=h_{j}\left(p_{i}\right) .
$$

Regular hexagon.

Its 6×6 slack matrix.

$$
\left[\begin{array}{llllll}
0 & 0 & 1 & 2 & 2 & 1 \\
1 & 0 & 0 & 1 & 2 & 2 \\
2 & 1 & 0 & 0 & 1 & 2 \\
2 & 2 & 1 & 0 & 0 & 1 \\
1 & 2 & 2 & 1 & 0 & 0 \\
0 & 1 & 2 & 2 & 1 & 0
\end{array}\right]
$$

Slack matrices of polytopes

Let P be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{\nu \times f}$ given by

$$
S_{P}(i, j)=h_{j}\left(p_{i}\right) .
$$

Regular hexagon.
 Its 6×6 slack matrix.

$$
\left[\begin{array}{llllll}
0 & 0 & 1 & 2 & 2 & 1 \\
1 & 0 & 0 & 1 & 2 & 2 \\
2 & 1 & 0 & 0 & 1 & 2 \\
2 & 2 & 1 & 0 & 0 & 1 \\
1 & 2 & 2 & 1 & 0 & 0 \\
0 & 1 & 2 & 2 & 1 & 0
\end{array}\right]
$$

- The slack matrix is defined only up to column scaling;

Slack matrices of polytopes

Let P be a polytope with facets given by $h_{1}(x) \geq 0, \ldots, h_{f}(x) \geq 0$, and vertices p_{1}, \ldots, p_{v}.

The slack matrix of P is the matrix $S_{P} \in \mathbb{R}^{\nu \times f}$ given by

$$
S_{P}(i, j)=h_{j}\left(p_{i}\right)
$$

Regular hexagon.
 Its 6×6 slack matrix.

$$
\left[\begin{array}{llllll}
0 & 0 & 1 & 2 & 2 & 1 \\
1 & 0 & 0 & 1 & 2 & 2 \\
2 & 1 & 0 & 0 & 1 & 2 \\
2 & 2 & 1 & 0 & 0 & 1 \\
1 & 2 & 2 & 1 & 0 & 0 \\
0 & 1 & 2 & 2 & 1 & 0
\end{array}\right]
$$

- The slack matrix is defined only up to column scaling;
- The slack matrix can't see affine transformations;

Moreover P is affinely equivalent to the convex hull of the rows of S_{P}.

Characterization of slack matrices

If P is a d-polytope with \mathcal{V}-representation $\left\{p_{1}, \ldots, p_{v}\right\}$ and \mathcal{H}-representation $A x \leq b$ then

$$
S_{P}=\left[\begin{array}{ll}
b & -A
\end{array}\right]\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
p_{1} & p_{2} & \cdots & p_{v}
\end{array}\right]
$$

In particular S_{P} has rank $d+1$.

Characterization of slack matrices

If P is a d-polytope with \mathcal{V}-representation $\left\{p_{1}, \ldots, p_{v}\right\}$ and \mathcal{H}-representation $A x \leq b$ then

$$
S_{P}=\left[\begin{array}{ll}
b & -A
\end{array}\right]\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
p_{1} & p_{2} & \cdots & p_{v}
\end{array}\right]
$$

In particular S_{P} has rank $d+1$.
Any polytope of the same combinatorial class of P must have a slack matrix with the same zero-pattern.

Characterization of slack matrices

If P is a d-polytope with \mathcal{V}-representation $\left\{p_{1}, \ldots, p_{v}\right\}$ and \mathcal{H}-representation $A x \leq b$ then

$$
S_{P}=\left[\begin{array}{ll}
b & -A
\end{array}\right]\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
p_{1} & p_{2} & \cdots & p_{v}
\end{array}\right]
$$

In particular S_{P} has rank $d+1$.
Any polytope of the same combinatorial class of P must have a slack matrix with the same zero-pattern.

Theorem (GGKPRT, 2013)

A nonnegative matrix S is the slack matrix of some realization of P if and only if
(1) $\operatorname{supp}(S)=\operatorname{supp}\left(S_{P}\right)$;
(2) $\operatorname{rank}(S)=\operatorname{rank}\left(S_{P}\right)=d+1$;
(3) the all ones vector lies in the column span of S.

Characterization of slack matrices

If P is a d-polytope with \mathcal{V}-representation $\left\{p_{1}, \ldots, p_{v}\right\}$ and \mathcal{H}-representation $A x \leq b$ then

$$
S_{P}=\left[\begin{array}{ll}
b & -A
\end{array}\right]\left[\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
p_{1} & p_{2} & \cdots & p_{v}
\end{array}\right]
$$

In particular S_{P} has rank $d+1$.
Any polytope of the same combinatorial class of P must have a slack matrix with the same zero-pattern.

Theorem (GGKPRT, 2013)

A nonnegative matrix S is the slack matrix of some realization of P if and only if
(1) $\operatorname{supp}(S)=\operatorname{supp}\left(S_{P}\right)$;
(2) $\operatorname{rank}(S)=\operatorname{rank}\left(S_{P}\right)=d+1$;
(3) the all ones vector lies in the column span of S.

There is a one-to-one correspondence between matrices with those properties (up to column scaling) and realizations of P (up to affine equivalence).

Projective equivalence

In general, we will be interested in modding out projective transformations.

$$
Q \stackrel{p}{=} P \Leftrightarrow Q=\phi(P), \quad \phi(x)=\frac{A x+b}{c^{\top}+d}, \quad \operatorname{det}\left[\begin{array}{cc}
A & b \\
c^{\top} x & d
\end{array}\right] \neq 0
$$

Projective equivalence

In general, we will be interested in modding out projective transformations.

$$
Q \stackrel{p}{=} P \Leftrightarrow Q=\phi(P), \quad \phi(x)=\frac{A x+b}{c^{\top}+d}, \quad \operatorname{det}\left[\begin{array}{cc}
A & b \\
c^{\top} x & d
\end{array}\right] \neq 0
$$

All convex quadrilaterals are projectively equivalent to a square. A square is projectively unique.

Projective equivalence

In general, we will be interested in modding out projective transformations.

$$
Q \stackrel{p}{=} P \Leftrightarrow Q=\phi(P), \quad \phi(x)=\frac{A x+b}{c^{\top}+d}, \quad \operatorname{det}\left[\begin{array}{cc}
A & b \\
c^{\top} x & d
\end{array}\right] \neq 0
$$

All convex quadrilaterals are projectively equivalent to a square. A square is projectively unique.

Slack matrices offer a natural way of quotient projective transformations.

Theorem (GPRT, 2017)

$$
Q \stackrel{p}{=} P \Leftrightarrow S_{Q}=D_{v} S_{P} D_{f} \text { for some positive diagonal matrices } D_{v}, D_{f}
$$

Slack ideals

Slack ideal

Let P be a d-polytope and $S_{P}(x)$ a symbolic matrix with the same support as S_{P}. Then the slack ideal of P is

$$
I_{P}=\left\langle(d+2) \text {-minors of } S_{P}(x)\right\rangle
$$

Slack ideals

Slack ideal

Let P be a d-polytope and $S_{P}(x)$ a symbolic matrix with the same support as S_{P}. Then the slack ideal of P is

$$
I_{P}=\left\langle(d+2) \text {-minors of } S_{P}(x)\right\rangle:\left(\prod x_{i}\right)^{\infty} .
$$

Slack ideals

Slack ideal

Let P be a d-polytope and $S_{P}(x)$ a symbolic matrix with the same support as S_{P}. Then the slack ideal of P is

$$
I_{P}=\left\langle(d+2) \text {-minors of } S_{P}(x)\right\rangle:\left(\prod x_{i}\right)^{\infty} .
$$

Slack ideals

Slack ideal

Let P be a d-polytope and $S_{P}(x)$ a symbolic matrix with the same support as S_{P}. Then the slack ideal of P is

$$
I_{P}=\left\langle(d+2) \text {-minors of } S_{P}(x)\right\rangle:\left(\prod x_{i}\right)^{\infty} .
$$

$S_{P}=\left(\begin{array}{lllll}1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right)$

Slack ideals

Slack ideal

Let P be a d-polytope and $S_{P}(x)$ a symbolic matrix with the same support as S_{P}. Then the slack ideal of P is

$$
I_{P}=\left\langle(d+2) \text {-minors of } S_{P}(x)\right\rangle:\left(\prod x_{i}\right)^{\infty}
$$

$S_{P}=\left(\begin{array}{lllll}1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right) \quad S_{P}(x)=\left(\begin{array}{ccccc}x_{1} & x_{2} & 0 & 0 & 0 \\ 0 & x_{3} & x_{4} & 0 & 0 \\ 0 & 0 & x_{5} & x_{6} & 0 \\ x_{7} & 0 & 0 & x_{8} & 0 \\ 0 & 0 & 0 & 0 & x_{9}\end{array}\right)$

Slack ideals

Slack ideal

Let P be a d-polytope and $S_{P}(x)$ a symbolic matrix with the same support as S_{P}. Then the slack ideal of P is

$$
I_{P}=\left\langle(d+2) \text {-minors of } S_{P}(x)\right\rangle:\left(\prod x_{i}\right)^{\infty}
$$

$S_{P}=\left(\begin{array}{lllll}1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right) \quad S_{P}(x)=\left(\begin{array}{ccccc}x_{1} & x_{2} & 0 & 0 & 0 \\ 0 & x_{3} & x_{4} & 0 & 0 \\ 0 & 0 & x_{5} & x_{6} & 0 \\ x_{7} & 0 & 0 & x_{8} & 0 \\ 0 & 0 & 0 & 0 & x_{9}\end{array}\right)$

$$
I_{P}=\left\langle x_{1} x_{3} x_{5} x_{8} x_{9}-x_{2} x_{4} x_{6} x_{7} x_{9}\right\rangle:\left(\prod x_{i}\right)^{\infty}
$$

Slack ideals

Slack ideal

Let P be a d-polytope and $S_{P}(x)$ a symbolic matrix with the same support as S_{P}. Then the slack ideal of P is

$$
I_{P}=\left\langle(d+2) \text {-minors of } S_{P}(x)\right\rangle:\left(\prod x_{i}\right)^{\infty}
$$

$S_{P}=\left(\begin{array}{lllll}1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1\end{array}\right) \quad S_{P}(x)=\left(\begin{array}{ccccc}x_{1} & x_{2} & 0 & 0 & 0 \\ 0 & x_{3} & x_{4} & 0 & 0 \\ 0 & 0 & x_{5} & x_{6} & 0 \\ x_{7} & 0 & 0 & x_{8} & 0 \\ 0 & 0 & 0 & 0 & x_{9}\end{array}\right)$

$$
I_{P}=\left\langle x_{1} x_{3} x_{5} x_{8} x_{9}-x_{2} x_{4} x_{6} x_{7} x_{9}\right\rangle:\left(\prod x_{i}\right)^{\infty}=\left\langle x_{1} x_{3} x_{5} x_{8}-x_{2} x_{4} x_{6} x_{7}\right\rangle
$$

Slack realization space

- $\mathcal{V}\left(I_{P}\right)$ is the slack variety of P.
- Positive part of slack variety: $\mathcal{V}_{+}\left(I_{P}\right)=\mathcal{V}\left(I_{P}\right) \cap \mathbb{R}_{+}^{n}$

Slack realization space

- $\mathcal{V}\left(I_{P}\right)$ is the slack variety of P.
- Positive part of slack variety: $\mathcal{V}_{+}\left(I_{P}\right)=\mathcal{V}\left(I_{P}\right) \cap \mathbb{R}_{+}^{n}$
- $\mathbb{R}_{>0}^{v} \times \mathbb{R}_{>0}^{f}$ acts on $\mathcal{V}_{+}\left(I_{P}\right)$:

$$
D_{v} \mathbf{s} D_{f} \in \mathcal{V}_{+}\left(I_{P}\right) \quad \begin{aligned}
& \text { for every } \mathbf{s} \in \mathcal{V}_{+}\left(I_{P}\right), \\
& D_{v}, D_{f} \text { positive diagonal matrices }
\end{aligned}
$$

Slack realization space

- $\mathcal{V}\left(I_{P}\right)$ is the slack variety of P.
- Positive part of slack variety: $\mathcal{V}_{+}\left(I_{P}\right)=\mathcal{V}\left(I_{P}\right) \cap \mathbb{R}_{+}^{n}$
- $\mathbb{R}_{>0}^{v} \times \mathbb{R}_{>0}^{f}$ acts on $\mathcal{V}_{+}\left(I_{P}\right)$:

$$
D_{v} \mathrm{~s} D_{f} \in \mathcal{V}_{+}\left(I_{P}\right) \quad \begin{aligned}
& \text { for every } \mathbf{s} \in \mathcal{V}_{+}\left(I_{P}\right) \\
& D_{v}, D_{f} \text { positive diagonal matrices }
\end{aligned}
$$

Theorem (GMTW, 2017)

$\mathcal{V}_{+}\left(I_{P}\right) /\left(\mathbb{R}_{>0}^{v} \times \mathbb{R}_{>0}^{f}\right) \stackrel{1: 1}{\longleftrightarrow}$ classes of projectively equivalent polytopes of the same combinatorial type as P.

Slack realization space

- $\mathcal{V}\left(I_{P}\right)$ is the slack variety of P.
- Positive part of slack variety: $\mathcal{V}_{+}\left(I_{P}\right)=\mathcal{V}\left(I_{P}\right) \cap \mathbb{R}_{+}^{n}$
- $\mathbb{R}_{>0}^{v} \times \mathbb{R}_{>0}^{f}$ acts on $\mathcal{V}_{+}\left(I_{P}\right)$:

$$
D_{v} \mathbf{s} D_{f} \in \mathcal{V}_{+}\left(I_{P}\right) \quad \begin{aligned}
& \text { for every } \mathbf{s} \in \mathcal{V}_{+}\left(I_{P}\right) \\
& D_{v}, D_{f} \text { positive diagonal matrices }
\end{aligned}
$$

Theorem (GMTW, 2017)

$\mathcal{V}_{+}\left(I_{P}\right) /\left(\mathbb{R}_{>0}^{v} \times \mathbb{R}_{>0}^{f}\right) \stackrel{1: 1}{\longleftrightarrow}$ classes of projectively equivalent polytopes of the same combinatorial type as P.

We call $\mathcal{V}_{+}\left(I_{P}\right) /\left(\mathbb{R}_{>0}^{v} \times \mathbb{R}_{>0}^{f}\right)$ the slack realization space of P.

Connection to the classical model

$$
x=\left[\begin{array}{lll}
p_{1} & \cdots & p_{v}
\end{array}\right] \in \mathcal{R}(P)
$$

Connection to the classical model

$$
x=\left[\begin{array}{lll}
p_{1} & \cdots & p_{v}
\end{array}\right] \in \mathcal{R}(P) \quad \rightarrow \quad \bar{x}=\left[\begin{array}{ccc}
1 & \cdots & 1 \\
p_{1} & \cdots & p_{v}
\end{array}\right]
$$

Connection to the classical model

$$
\begin{array}{r}
x=\left[\begin{array}{lll}
p_{1} & \cdots & p_{v}
\end{array}\right] \in \mathcal{R}(P) \quad \rightarrow \quad \bar{x}=\left[\begin{array}{ccc}
1 & \cdots & 1 \\
p_{1} & \cdots & p_{v}
\end{array}\right] \\
\downarrow
\end{array}
$$

$$
\text { row space of } \bar{x} \in \operatorname{Gr}_{d+1}\left(\mathbb{R}^{v}\right)
$$

Connection to the classical model

$$
\begin{gathered}
x=\left[\begin{array}{lll}
p_{1} & \cdots & p_{v}
\end{array}\right] \in \mathcal{R}(P) \quad \rightarrow \quad \bar{x}=\left[\begin{array}{ccc}
1 & \cdots & 1 \\
p_{1} & \cdots & p_{v}
\end{array}\right] \\
\downarrow \\
\tilde{x}=\left(\operatorname{det}\left(\bar{x}_{I}\right)\right)_{I} \in \mathbb{P}^{\binom{v}{d}-1} \quad \leftarrow \quad \text { row space of } \bar{x} \in \operatorname{Gr}_{d+1}\left(\mathbb{R}^{v}\right)
\end{gathered}
$$

Connection to the classical model

$$
\begin{gathered}
x=\left[\begin{array}{lll}
p_{1} & \cdots & p_{v}
\end{array}\right] \in \mathcal{R}(P) \quad \rightarrow \quad \bar{x}=\left[\begin{array}{ccc}
1 & \cdots & 1 \\
p_{1} & \cdots & p_{v}
\end{array}\right] \\
\downarrow \\
\tilde{x}=\left(\operatorname{det}\left(\bar{x}_{I}\right)\right)_{I} \in \mathbb{P}^{\binom{v}{d}-1} \quad \leftarrow \quad \text { row space of } \bar{x} \in \operatorname{Gr}_{d+1}\left(\mathbb{R}^{v}\right)
\end{gathered}
$$

This sends $\mathcal{R}(P)$ bijectively up to affine transformations into a subset of the Plücker embedding of $\operatorname{Gr}_{d+1}\left(\mathbb{R}^{v}\right)$ cut out (mostly) from positivity, negativity and nullity conditions on some of the variables.

Connection to the classical model

$$
\begin{gathered}
x=\left[\begin{array}{lll}
p_{1} & \cdots & p_{v}
\end{array}\right] \in \mathcal{R}(P) \quad \rightarrow \quad \bar{x}=\left[\begin{array}{ccc}
1 & \cdots & 1 \\
p_{1} & \cdots & p_{v}
\end{array}\right] \\
\downarrow \\
\tilde{x}=\left(\operatorname{det}\left(\bar{x}_{I}\right)\right)_{I} \in \mathbb{P}^{\binom{v}{d}-1} \quad \leftarrow \quad \text { row space of } \bar{x} \in \operatorname{Gr}_{d+1}\left(\mathbb{R}^{v}\right)
\end{gathered}
$$

This sends $\mathcal{R}(P)$ bijectively up to affine transformations into a subset of the Plücker embedding of $\operatorname{Gr}_{d+1}\left(\mathbb{R}^{v}\right)$ cut out (mostly) from positivity, negativity and nullity conditions on some of the variables.

If for every facet k of P we pick a set I_{k} of $d-1$ spanning vertices we can define a matrix

$$
(S(\tilde{x}))_{k, l}= \pm \tilde{x}_{\left(l_{k}, l\right)}
$$

This is a slack matrix of P and its row space is \bar{x}.

Section 3

Applications

Application 1: Psd-minimality

A semidefinite representation of size k of a d-polytope P is a description

$$
P=\left\{x \in \mathbb{R}^{d} \mid \exists y \text { s.t. } A_{0}+\sum A_{i} x_{i}+\sum B_{i} y_{i} \succeq 0\right\}
$$

where A_{i} and B_{i} are $k \times k$ real symmetric matrices.

Application 1: Psd-minimality

A semidefinite representation of size k of a d-polytope P is a description

$$
P=\left\{x \in \mathbb{R}^{d} \mid \exists y \text { s.t. } A_{0}+\sum A_{i} x_{i}+\sum B_{i} y_{i} \succeq 0\right\}
$$

where A_{i} and B_{i} are $k \times k$ real symmetric matrices.
If we allow A_{i} and B_{i} to be hermitian, we call it a complex semidefinite representation.

Application 1: Psd-minimality

A semidefinite representation of size k of a d-polytope P is a description

$$
P=\left\{x \in \mathbb{R}^{d} \mid \exists y \text { s.t. } A_{0}+\sum A_{i} x_{i}+\sum B_{i} y_{i} \succeq 0\right\}
$$

where A_{i} and B_{i} are $k \times k$ real symmetric matrices.
If we allow A_{i} and B_{i} to be hermitian, we call it a complex semidefinite representation.

Projection on x_{1} and x_{2} of

$$
\left[\begin{array}{ccc}
1 & x_{1} & x_{2} \\
x_{1} & x_{1} & y \\
x_{2} & y & x_{2}
\end{array}\right] \succeq 0 .
$$

Application 1: Psd-minimality

A semidefinite representation of size k of a d-polytope P is a description

$$
P=\left\{x \in \mathbb{R}^{d} \mid \exists y \text { s.t. } A_{0}+\sum A_{i} x_{i}+\sum B_{i} y_{i} \succeq 0\right\}
$$

where A_{i} and B_{i} are $k \times k$ real symmetric matrices.
If we allow A_{i} and B_{i} to be hermitian, we call it a complex semidefinite representation.

Projection on x_{1} and x_{2} of

$$
\left[\begin{array}{ccc}
1 & x_{1} & x_{2} \\
x_{1} & x_{1} & y \\
x_{2} & y & x_{2}
\end{array}\right] \succeq 0 .
$$

Application 1: Psd-minimality

A semidefinite representation of size k of a d-polytope P is a description

$$
P=\left\{x \in \mathbb{R}^{d} \mid \exists y \text { s.t. } A_{0}+\sum A_{i} x_{i}+\sum B_{i} y_{i} \succeq 0\right\}
$$

where A_{i} and B_{i} are $k \times k$ real symmetric matrices.
If we allow A_{i} and B_{i} to be hermitian, we call it a complex semidefinite representation.

Projection on x_{1} and x_{2} of

$$
\left[\begin{array}{ccc}
1 & x_{1} & x_{2} \\
x_{1} & x_{1} & y \\
x_{2} & y & x_{2}
\end{array}\right] \succeq 0 .
$$

Optimizing over such sets is "easy": we want small representations.

Application 1: Psd-minimality

A semidefinite representation of size k of a d-polytope P is a description

$$
P=\left\{x \in \mathbb{R}^{d} \mid \exists y \text { s.t. } A_{0}+\sum A_{i} x_{i}+\sum B_{i} y_{i} \succeq 0\right\}
$$

where A_{i} and B_{i} are $k \times k$ real symmetric matrices.
If we allow A_{i} and B_{i} to be hermitian, we call it a complex semidefinite representation.

Projection on x_{1} and x_{2} of

$$
\left[\begin{array}{ccc}
1 & x_{1} & x_{2} \\
x_{1} & x_{1} & y \\
x_{2} & y & x_{2}
\end{array}\right] \succeq 0
$$

Optimizing over such sets is "easy": we want small representations. Turns out the smallest possible size is $d+1$. When does that happen?

Application 1: Psd-minimality (part 2)

Theorem (GRT 2013; GGS 2016)

- A polytope P is psd-minimal $\Leftrightarrow \exists S_{p}(y) \in \mathcal{V}_{\mathbb{R}}\left(I_{P}\right)$ such that $S_{P}=S_{P}\left(y^{2}\right)$.
- A polytope P is psd $d_{\mathbb{C}}$-minimal $\Leftrightarrow \exists S_{p}(y) \in \mathcal{V}_{\mathbb{C}}\left(I_{P}\right)$ such that $S_{P}=S_{P}\left(|y|^{2}\right)$

Application 1: Psd-minimality (part 2)

Theorem (GRT 2013; GGS 2016)

- A polytope P is psd-minimal $\Leftrightarrow \exists S_{p}(y) \in \mathcal{V}_{\mathbb{R}}\left(I_{P}\right)$ such that $S_{P}=S_{P}\left(y^{2}\right)$.
- A polytope P is psd $d_{\mathbb{C}}$-minimal $\Leftrightarrow \exists S_{p}(y) \in \mathcal{V}_{\mathbb{C}}\left(I_{P}\right)$ such that $S_{P}=S_{P}\left(|y|^{2}\right)$

Lemma If I_{P} has a trinomial $x^{a}+x^{b}-x^{c}$ then P is not psd-minimal.

Application 1: Psd-minimality (part 2)

Theorem (GRT 2013; GGS 2016)

- A polytope P is psd-minimal $\Leftrightarrow \exists S_{p}(y) \in \mathcal{V}_{\mathbb{R}}\left(I_{P}\right)$ such that $S_{P}=S_{P}\left(y^{2}\right)$.
- A polytope P is psd $d_{\mathbb{C}}$-minimal $\Leftrightarrow \exists S_{p}(y) \in \mathcal{V}_{\mathbb{C}}\left(I_{P}\right)$ such that $S_{P}=S_{P}\left(|y|^{2}\right)$

Lemma If I_{P} has a trinomial $x^{a}+x^{b}-x^{c}$ then P is not psd-minimal.

- In \mathbb{R}^{2} (2 types), \mathbb{R}^{3} (6 types) this recovers [GRT 2013].

Application 1: Psd-minimality (part 2)

Theorem (GRT 2013; GGS 2016)

- A polytope P is psd-minimal $\Leftrightarrow \exists S_{p}(y) \in \mathcal{V}_{\mathbb{R}}\left(I_{P}\right)$ such that $S_{P}=S_{P}\left(y^{2}\right)$.
- A polytope P is psd $d_{\mathbb{C}}$-minimal $\Leftrightarrow \exists S_{p}(y) \in \mathcal{V}_{\mathbb{C}}\left(I_{P}\right)$ such that $S_{P}=S_{P}\left(|y|^{2}\right)$

Lemma If I_{P} has a trinomial $x^{a}+x^{b}-x^{c}$ then P is not psd-minimal.

- In \mathbb{R}^{2} (2 types), \mathbb{R}^{3} (6 types) this recovers [GRT 2013].
- In \mathbb{R}^{4} (31 types) this allowed the classification [GPRT, 2017].

Application 1: Psd-minimality (part 2)

Theorem (GRT 2013; GGS 2016)

- A polytope P is psd-minimal $\Leftrightarrow \exists S_{p}(y) \in \mathcal{V}_{\mathbb{R}}\left(I_{P}\right)$ such that $S_{P}=S_{P}\left(y^{2}\right)$.
- A polytope P is psd $d_{\mathbb{C}}$-minimal $\Leftrightarrow \exists S_{p}(y) \in \mathcal{V}_{\mathbb{C}}\left(I_{P}\right)$ such that $S_{P}=S_{P}\left(|y|^{2}\right)$

Lemma If I_{P} has a trinomial $x^{a}+x^{b}-x^{c}$ then P is not psd-minimal.

- In \mathbb{R}^{2} (2 types), \mathbb{R}^{3} (6 types) this recovers [GRT 2013].
- In \mathbb{R}^{4} (31 types) this allowed the classification [GPRT, 2017].

Lemma Suppose P is psd $d_{\mathbb{C}}$-minimal, i.e. $S_{P}=S_{P}\left(|y|^{2}\right)$. If I_{P} has a trinomial $x^{a}+x^{b}-x^{c}$ then $\Re\left(y^{a} \overline{y^{b}}\right)=0$.

Application 1: Psd-minimality (part 2)

Theorem (GRT 2013; GGS 2016)

- A polytope P is psd-minimal $\Leftrightarrow \exists S_{p}(y) \in \mathcal{V}_{\mathbb{R}}\left(I_{P}\right)$ such that $S_{P}=S_{P}\left(y^{2}\right)$.
- A polytope P is psd $\mathbb{C}_{\mathbb{C}}$-minimal $\Leftrightarrow \exists S_{p}(y) \in \mathcal{V}_{\mathbb{C}}\left(I_{P}\right)$ such that $S_{P}=S_{P}\left(|y|^{2}\right)$

Lemma If I_{P} has a trinomial $x^{a}+x^{b}-x^{c}$ then P is not psd-minimal.

- In \mathbb{R}^{2} (2 types), \mathbb{R}^{3} (6 types) this recovers [GRT 2013].
- In \mathbb{R}^{4} (31 types) this allowed the classification [GPRT, 2017].

Lemma Suppose P is psd $d_{\mathbb{C}}$-minimal, i.e. $S_{P}=S_{P}\left(|y|^{2}\right)$. If I_{P} has a trinomial $x^{a}+x^{b}-x^{c}$ then $\Re\left(y^{a} \overline{y^{b}}\right)=0$.

- In \mathbb{R}^{2} (3 types), [GGS 2017, CG 2018].

Application 1: Psd-minimality (part 2)

Theorem (GRT 2013; GGS 2016)

- A polytope P is psd-minimal $\Leftrightarrow \exists S_{p}(y) \in \mathcal{V}_{\mathbb{R}}\left(I_{P}\right)$ such that $S_{P}=S_{P}\left(y^{2}\right)$.
- A polytope P is psd $\mathbb{C}_{\mathbb{C}}$-minimal $\Leftrightarrow \exists S_{p}(y) \in \mathcal{V}_{\mathbb{C}}\left(I_{P}\right)$ such that $S_{P}=S_{P}\left(|y|^{2}\right)$

Lemma If I_{P} has a trinomial $x^{a}+x^{b}-x^{c}$ then P is not psd-minimal.

- In \mathbb{R}^{2} (2 types), \mathbb{R}^{3} (6 types) this recovers [GRT 2013].
- In \mathbb{R}^{4} (31 types) this allowed the classification [GPRT, 2017].

Lemma Suppose P is $p s d_{\mathbb{C}}$-minimal, i.e. $S_{P}=S_{P}\left(|y|^{2}\right)$. If I_{P} has a trinomial $x^{a}+x^{b}-x^{c}$ then $\Re\left(y^{a} \overline{y^{b}}\right)=0$.

- In \mathbb{R}^{2} (3 types), [GGS 2017, CG 2018].
- In \mathbb{R}^{3} who knows?...

Application 2: Rationality

A combinatorial polytope is rational if it has a realization in which all vertices have rational coordinates.

Application 2: Rationality

A combinatorial polytope is rational if it has a realization in which all vertices have rational coordinates.

Lemma A polytope P is rational $\Leftrightarrow \mathcal{V}_{+}\left(I_{P}\right)$ has a rational point.

Application 2: Rationality

A combinatorial polytope is rational if it has a realization in which all vertices have rational coordinates.

Lemma A polytope P is rational $\Leftrightarrow \mathcal{V}_{+}\left(I_{P}\right)$ has a rational point.
We consider the following point-line arrangement in the plane [Grünbaum, 1967]:

$$
S_{P}(x)=\left(\begin{array}{ccccccccc}
x_{1} & 0 & x_{2} & 0 & x_{3} & x_{4} & x_{5} & x_{6} & 0 \\
x_{7} & x_{8} & x_{9} & 0 & x_{10} & 0 & 0 & x_{11} & x_{12} \\
x_{13} & x_{14} & 0 & x_{15} & x_{16} & x_{17} & x_{18} & 0 & 0 \\
x_{12} & x_{20} & 0 & x_{21} & 0 & 0 & x_{22} & x_{23} & x_{24} \\
x_{25} & 0 & x_{22} & x_{27} & 0 & x_{28} & 0 & 0 & x_{29} \\
0 & 0 & x_{30} & x_{31} & x_{32} & 0 & x_{33} & x_{34} & x_{35} \\
0 & x_{36} & 0 & x_{37} & x_{38} & x_{39} & 0 & x_{40} & x_{41} \\
0 & x_{42} & x_{43} & 0 & x_{44} & x_{45} & x_{46} & 0 & x_{47} \\
0 & x_{48} & x_{49} & x_{50} & 0 & x_{51} & x_{52} & x_{53} & 0
\end{array}\right)
$$

Application 2: Rationality

A combinatorial polytope is rational if it has a realization in which all vertices have rational coordinates.

Lemma A polytope P is rational $\Leftrightarrow \mathcal{V}_{+}\left(I_{P}\right)$ has a rational point.
We consider the following point-line arrangement in the plane [Grünbaum, 1967]:

$$
S_{P}(x)=\left(\begin{array}{ccccccccc}
x_{1} & 0 & x_{2} & 0 & x_{3} & x_{4} & x_{5} & x_{6} & 0 \\
x_{7} & x_{8} & x_{9} & 0 & x_{10} & 0 & 0 & x_{11} & x_{12} \\
x_{13} & x_{14} & 0 & x_{15} & x_{16} & x_{17} & x_{18} & 0 & 0 \\
x_{19} & x_{20} & 0 & x_{21} & 0 & 0 & x_{22} & x_{23} & x_{24} \\
x_{25} & 0 & x_{26} & x_{27} & 0 & x_{28} & 0 & 0 & x_{29} \\
0 & 0 & x_{30} & x_{31} & x_{32} & 0 & x_{33} & x_{34} & x_{35} \\
0 & x_{36} & 0 & x_{37} & x_{38} & x_{39} & 0 & x_{40} & x_{41} \\
0 & x_{42} & x_{43} & 0 & x_{44} & x_{45} & x_{46} & 0 & x_{47} \\
0 & x_{48} & x_{49} & x_{50} & 0 & x_{51} & x_{52} & x_{53} & 0
\end{array}\right)
$$

Scaling rows and columns to set some variables to 1 (this does not affect rationality):

$$
x_{46}^{2}+x_{46}-1 \in I_{P}
$$

Application 2: Rationality

A combinatorial polytope is rational if it has a realization in which all vertices have rational coordinates.

Lemma A polytope P is rational $\Leftrightarrow \mathcal{V}_{+}\left(I_{P}\right)$ has a rational point.
We consider the following point-line arrangement in the plane [Grünbaum, 1967]:

$$
S_{P}(x)=\left(\begin{array}{ccccccccc}
x_{1} & 0 & x_{2} & 0 & x_{3} & x_{4} & x_{5} & x_{6} & 0 \\
x_{7} & x_{8} & x_{9} & 0 & x_{10} & 0 & 0 & x_{11} & x_{12} \\
x_{13} & x_{14} & 0 & x_{15} & x_{16} & x_{17} & x_{18} & 0 & 0 \\
x_{19} & x_{20} & 0 & x_{21} & 0 & 0 & x_{22} & x_{23} & x_{24} \\
x_{25} & 0 & x_{26} & x_{27} & 0 & x_{28} & 0 & 0 & x_{29} \\
0 & 0 & x_{30} & x_{31} & x_{32} & 0 & x_{33} & x_{34} & x_{35} \\
0 & x_{36} & 0 & x_{37} & x_{38} & x_{39} & 0 & x_{40} & x_{41} \\
0 & x_{42} & x_{43} & 0 & x_{44} & x_{45} & x_{46} & 0 & x_{47} \\
0 & x_{48} & x_{49} & x_{50} & 0 & x_{51} & x_{52} & x_{53} & 0
\end{array}\right)
$$

Scaling rows and columns to set some variables to 1 (this does not affect rationality):

$$
x_{46}^{2}+x_{46}-1 \in I_{P} \Rightarrow x_{46}=\frac{-1 \pm \sqrt{5}}{2} \Rightarrow \text { no rational realizations }
$$

Application 2: Rationality

A combinatorial polytope is rational if it has a realization in which all vertices have rational coordinates.

Lemma A polytope P is rational $\Leftrightarrow \mathcal{V}_{+}\left(I_{P}\right)$ has a rational point.
We consider the following point-line arrangement in the plane [Grünbaum, 1967]:

$$
S_{P}(x)=\left(\begin{array}{ccccccccc}
x_{1} & 0 & x_{2} & 0 & x_{3} & x_{4} & x_{5} & x_{6} & 0 \\
x_{7} & x_{8} & x_{9} & 0 & x_{10} & 0 & 0 & x_{11} & x_{12} \\
x_{13} & x_{14} & 0 & x_{15} & x_{16} & x_{17} & x_{18} & 0 & 0 \\
x_{19} & x_{20} & 0 & x_{21} & 0 & 0 & x_{22} & x_{23} & x_{24} \\
x_{25} & 0 & x_{26} & x_{27} & 0 & x_{28} & 0 & 0 & x_{29} \\
0 & 0 & x_{30} & x_{31} & x_{32} & 0 & x_{33} & x_{34} & x_{35} \\
0 & x_{36} & 0 & x_{37} & x_{38} & x_{39} & 0 & x_{40} & x_{41} \\
0 & x_{42} & x_{43} & 0 & x_{44} & x_{45} & x_{46} & 0 & x_{47} \\
0 & x_{48} & x_{49} & x_{50} & 0 & x_{51} & x_{52} & x_{53} & 0
\end{array}\right)
$$

Scaling rows and columns to set some variables to 1 (this does not affect rationality):

$$
x_{46}^{2}+x_{46}-1 \in I_{P} \Rightarrow x_{46}=\frac{-1 \pm \sqrt{5}}{2} \Rightarrow \text { no rational realizations }
$$

This can be extended to the ideal of the Perles polytope ($\mathrm{d}=8, \mathrm{v}=12, \mathrm{f}=34$) It is not rational but also its slack ideal is not prime.

Application 3: Realizability

Steinitz problem Check whether an abstract polytopal complex is the boundary of an actual polytope.

Application 3: Realizability

Steinitz problem Check whether an abstract polytopal complex is the boundary of an actual polytope.
[Altshuler, Steinberg, 1985]: 4-polytopes and 3-spheres with 8 vertices.
The smallest non-polytopal 3-sphere has vertex-facet non-incidence matrix

$$
S_{P}(x)=\left(\begin{array}{cccccccccc}
0 & 0 & 0 & 0 & 0 & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
0 & 0 & 0 & 0 & x_{6} & x_{7} & 0 & 0 & x_{8} & x_{9} \\
0 & 0 & x_{10} & x_{11} & x_{12} & 0 & 0 & 0 & 0 & x_{13} \\
0 & 0 & x_{14} & x_{15} & 0 & 0 & x_{16} & x_{17} & 0 & 0 \\
0 & x_{18} & 0 & x_{19} & 0 & 0 & 0 & x_{20} & x_{21} & x_{22} \\
x_{23} & 0 & x_{24} & 0 & 0 & x_{25} & x_{26} & 0 & 0 & 0 \\
x_{27} & x_{28} & 0 & 0 & x_{29} & 0 & 0 & 0 & 0 & 0 \\
x_{30} & x_{31} & 0 & 0 & 0 & 0 & x_{32} & x_{33} & x_{34} & 0
\end{array}\right) .
$$

Application 3: Realizability

Steinitz problem Check whether an abstract polytopal complex is the boundary of an actual polytope.
[Altshuler, Steinberg, 1985]: 4-polytopes and 3-spheres with 8 vertices.
The smallest non-polytopal 3-sphere has vertex-facet non-incidence matrix

$$
S_{P}(x)=\left(\begin{array}{cccccccccc}
0 & 0 & 0 & 0 & 0 & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
0 & 0 & 0 & 0 & x_{6} & x_{7} & 0 & 0 & x_{8} & x_{9} \\
0 & 0 & x_{10} & x_{11} & x_{12} & 0 & 0 & 0 & 0 & x_{13} \\
0 & 0 & x_{14} & x_{15} & 0 & 0 & x_{16} & x_{17} & 0 & 0 \\
0 & x_{18} & 0 & x_{19} & 0 & 0 & 0 & x_{20} & x_{21} & x_{22} \\
x_{23} & 0 & x_{24} & 0 & 0 & x_{25} & x_{26} & 0 & 0 & 0 \\
x_{27} & x_{28} & 0 & 0 & x_{29} & 0 & 0 & 0 & 0 & 0 \\
x_{30} & x_{31} & 0 & 0 & 0 & 0 & x_{32} & x_{33} & x_{34} & 0
\end{array}\right) .
$$

Proposition P is realizable $\Longleftrightarrow \mathcal{V}_{+}\left(I_{P}\right) \neq \varnothing$.

Application 3: Realizability

Steinitz problem Check whether an abstract polytopal complex is the boundary of an actual polytope.
[Altshuler, Steinberg, 1985]: 4-polytopes and 3-spheres with 8 vertices.
The smallest non-polytopal 3-sphere has vertex-facet non-incidence matrix

$$
S_{P}(x)=\left(\begin{array}{cccccccccc}
0 & 0 & 0 & 0 & 0 & x_{1} & x_{2} & x_{3} & x_{4} & x_{5} \\
0 & 0 & 0 & 0 & x_{6} & x_{7} & 0 & 0 & x_{8} & x_{9} \\
0 & 0 & x_{10} & x_{11} & x_{12} & 0 & 0 & 0 & 0 & x_{13} \\
0 & 0 & x_{14} & x_{15} & 0 & 0 & x_{16} & x_{17} & 0 & 0 \\
0 & x_{18} & 0 & x_{19} & 0 & 0 & 0 & x_{20} & x_{21} & x_{22} \\
x_{23} & 0 & x_{24} & 0 & 0 & x_{25} & x_{26} & 0 & 0 & 0 \\
x_{27} & x_{28} & 0 & 0 & x_{29} & 0 & 0 & 0 & 0 & 0 \\
x_{30} & x_{31} & 0 & 0 & 0 & 0 & x_{32} & x_{33} & x_{34} & 0
\end{array}\right) .
$$

Proposition P is realizable $\Longleftrightarrow \mathcal{V}_{+}\left(I_{P}\right) \neq \varnothing$.
In this case, $I_{P}=\langle 1\rangle \Rightarrow$ no rank 5 matrix with this support \Rightarrow no polytope.

Section 4

One more application

Dimension of the realization space

How much freedom does a certain combinatorial structure give us?

Dimension of the realization space

How much freedom does a certain combinatorial structure give us?

Given a polytope $P \subseteq \mathbb{R}^{n}$, what is the dimension of $\mathcal{R}(P)$?

Dimension of the realization space

How much freedom does a certain combinatorial structure give us?

Given a polytope $P \subseteq \mathbb{R}^{n}$, what is the dimension of $\mathcal{R}(P)$?

For $n=2$, clearly $\operatorname{dim}(\mathcal{R}(P))=2 v$.

Dimension of the realization space

How much freedom does a certain combinatorial structure give us?

Given a polytope $P \subseteq \mathbb{R}^{n}$, what is the dimension of $\mathcal{R}(P)$?

For $n=2$, clearly $\operatorname{dim}(\mathcal{R}(P))=2 v$.
For $n=3$ we have $\operatorname{dim}(\mathcal{R}(P))=v+f+4$. [Steinitz]

Dimension of the realization space

How much freedom does a certain combinatorial structure give us?
Given a polytope $P \subseteq \mathbb{R}^{n}$, what is the dimension of $\mathcal{R}(P)$?

For $n=2$, clearly $\operatorname{dim}(\mathcal{R}(P))=2 v$.
For $n=3$ we have $\operatorname{dim}(\mathcal{R}(P))=v+f+4$. [Steinitz]
For $n>3$ there are very few general results/tools.

Dimension of the realization space

How much freedom does a certain combinatorial structure give us?
Given a polytope $P \subseteq \mathbb{R}^{n}$, what is the dimension of $\mathcal{R}(P)$?

For $n=2$, clearly $\operatorname{dim}(\mathcal{R}(P))=2 v$.
For $n=3$ we have $\operatorname{dim}(\mathcal{R}(P))=v+f+4$. [Steinitz]
For $n>3$ there are very few general results/tools.

$$
\operatorname{dim}(\mathcal{R}(P)) \leftrightarrow \operatorname{dim}\left(\mathcal{V}_{+}\left(I_{P}\right)\right)
$$

Dimension of the realization space

How much freedom does a certain combinatorial structure give us?
Given a polytope $P \subseteq \mathbb{R}^{n}$, what is the dimension of $\mathcal{R}(P)$?

For $n=2$, clearly $\operatorname{dim}(\mathcal{R}(P))=2 v$.
For $n=3$ we have $\operatorname{dim}(\mathcal{R}(P))=v+f+4$. [Steinitz]
For $n>3$ there are very few general results/tools.

$$
\operatorname{dim}(\mathcal{R}(P)) \leftrightarrow \operatorname{dim}\left(\mathcal{V}_{+}\left(I_{P}\right)\right)
$$

Can we compute the dimension of $\mathcal{V}\left(I_{P}\right)$?

How to do this?

How to do this?

© Exact Computational Algebra

How to do this?

(1) Exact Computational Algebra

Too hard: $\mathcal{V}\left(I_{P}\right)$ has around $v \times f$ entries.

How to do this?

(1) Exact Computational Algebra

Too hard: $\mathcal{V}\left(I_{P}\right)$ has around $v \times f$ entries.

- Statistical topology from samples

How to do this?

© Exact Computational Algebra
Too hard: $\mathcal{V}\left(I_{P}\right)$ has around $v \times f$ entries.
(2) Statistical topology from samples

Implies a sufficiently representative sample of polytopes with a given combinatorial structure.

How to do this?

© Exact Computational Algebra
Too hard: $\mathcal{V}\left(I_{P}\right)$ has around $v \times f$ entries.

- Statistical topology from samples

Implies a sufficiently representative sample of polytopes with a given combinatorial structure. Hopeless in general.

How to do this?

(1) Exact Computational Algebra

Too hard: $\mathcal{V}\left(I_{P}\right)$ has around $v \times f$ entries.
(3) Statistical topology from samples

Implies a sufficiently representative sample of polytopes with a given combinatorial structure. Hopeless in general.

However

- Maybe we can use the structure of the variety to do enough?

Perturbing a polytope

Let us go to a related more basic problem:

How to perturb a polytope while preserving the combinatorics?

Perturbing a polytope

Let us go to a related more basic problem:

How to perturb a polytope while preserving the combinatorics?

Given a polytope P, we can always add noise to the entries of S_{P} but then we are away from $\mathcal{V}\left(I_{P}\right)$.

Perturbing a polytope

Let us go to a related more basic problem:

How to perturb a polytope while preserving the combinatorics?

Given a polytope P, we can always add noise to the entries of S_{P} but then we are away from $\mathcal{V}\left(I_{P}\right)$. Can we project it back?

Perturbing a polytope

Let us go to a related more basic problem:

How to perturb a polytope while preserving the combinatorics?

Given a polytope P, we can always add noise to the entries of S_{P} but then we are away from $\mathcal{V}\left(I_{P}\right)$. Can we project it back? Yes!!! By using the fact that

$$
\mathcal{V}\left(I_{P}\right)=\{X: \operatorname{rank}(X) \leq d+1\} \cap L .
$$

Perturbing a polytope

Let us go to a related more basic problem:

How to perturb a polytope while preserving the combinatorics?

Given a polytope P, we can always add noise to the entries of S_{P} but then we are away from $\mathcal{V}\left(I_{P}\right)$. Can we project it back? Yes!!! By using the fact that

$$
\mathcal{V}\left(I_{P}\right)=\{X: \operatorname{rank}(X) \leq d+1\} \cap L .
$$

Proto-theorem - GPP sometime in the future

In general, Dykstra's alternate projection algorithm will applied to $\bar{S}=S_{P}+$ noise will converge to the projection of \bar{S} in $\mathcal{V}\left(I_{P}\right)$.

Perturbing a polytope

Let us go to a related more basic problem:

How to perturb a polytope while preserving the combinatorics?

Given a polytope P, we can always add noise to the entries of S_{P} but then we are away from $\mathcal{V}\left(I_{P}\right)$. Can we project it back? Yes!!! By using the fact that

$$
\mathcal{V}\left(I_{P}\right)=\{X: \operatorname{rank}(X) \leq d+1\} \cap L .
$$

Proto-theorem - GPP sometime in the future

In general, Dykstra's alternate projection algorithm will applied to $\bar{S}=S_{P}+$ noise will converge to the projection of \bar{S} in $\mathcal{V}\left(I_{P}\right)$.

This is not a full answer to the question, but might be enough.

Enter the statistics

Idea:

Enter the statistics

Idea:

(1) Start with $S_{P} \in \mathcal{V}_{\mathbb{R}}\left(I_{P}\right)$;

Enter the statistics

Idea:

(1) Start with $S_{P} \in \mathcal{V}_{\mathbb{R}}\left(I_{P}\right)$;
(0) Add noise to each entry following $N(0, \epsilon)$ distribution;

Enter the statistics

Idea:

(1) Start with $S_{P} \in \mathcal{V}_{\mathbb{R}}\left(I_{P}\right)$;
(3) Add noise to each entry following $N(0, \epsilon)$ distribution;

- Project the perturbed point to x in the variety and record the distance to S_{P};

Enter the statistics

Idea:

(1) Start with $S_{P} \in \mathcal{V}_{\mathbb{R}}\left(I_{P}\right)$;
(3) Add noise to each entry following $N(0, \epsilon)$ distribution;

- Project the perturbed point to x in the variety and record the distance to S_{P};
- Repeat ad nauseam

Enter the statistics

Idea:

(1) Start with $S_{P} \in \mathcal{V}_{\mathbb{R}}\left(I_{P}\right)$;
(0) Add noise to each entry following $N(0, \epsilon)$ distribution;

- Project the perturbed point to x in the variety and record the distance to S_{P};
- Repeat ad nauseam

What is happening?

As $\epsilon \rightarrow 0$ we are essentially projecting onto the tangent space in S_{P}.

Enter the statistics

Idea:

(1) Start with $S_{P} \in \mathcal{V}_{\mathbb{R}}\left(I_{P}\right)$;
(3) Add noise to each entry following $N(0, \epsilon)$ distribution;

- Project the perturbed point to x in the variety and record the distance to S_{P};
- Repeat ad nauseam

What is happening?

As $\epsilon \rightarrow 0$ we are essentially projecting onto the tangent space in S_{P}.

Proto-theorem - GPP sometime in the future

As $\varepsilon \rightarrow 0$,

$$
\frac{1}{\varepsilon^{2}} d\left(x, S_{P}\right)^{2} \rightarrow \chi^{2}\left(\operatorname{dim} \mathcal{V}_{\mathbb{R}}\left(I_{P}\right)\right)
$$

Enter the statistics

Idea:

© Start with $S_{P} \in \mathcal{V}_{\mathbb{R}}\left(I_{P}\right)$;
(3) Add noise to each entry following $N(0, \epsilon)$ distribution;

- Project the perturbed point to x in the variety and record the distance to S_{P};
- Repeat ad nauseam

What is happening?

As $\epsilon \rightarrow 0$ we are essentially projecting onto the tangent space in S_{P}.
Proto-theorem - GPP sometime in the future
As $\varepsilon \rightarrow 0$,

$$
\frac{1}{\varepsilon^{2}} d\left(x, S_{P}\right)^{2} \rightarrow \chi^{2}\left(\operatorname{dim} \mathcal{V}_{\mathbb{R}}\left(I_{P}\right)\right)
$$

In particular the average distance squared should converge to the dimension!

Lets try it out

Lets try it out

Recall that the hypersimplex $H_{n, k}$ is defined as

$$
H_{n, k}=\left\{x \in[0,1]^{n}: \sum x_{i}=k\right\} .
$$

Lets try it out

Recall that the hypersimplex $H_{n, k}$ is defined as

$$
H_{n, k}=\left\{x \in[0,1]^{n}: \sum x_{i}=k\right\} .
$$

Theorem (Padrol-Sanyal 2016)

Let $I_{n, k}$ be the slack ideal of $H_{n, k}$. For $k \geq 2$, we have

$$
\operatorname{dim} V_{+}\left(I_{n, k}\right) \leq\binom{ n-1}{2}+\binom{n}{k}+2 n-1
$$

with equality for $k=2$.

Lets try it out

Recall that the hypersimplex $H_{n, k}$ is defined as

$$
H_{n, k}=\left\{x \in[0,1]^{n}: \sum x_{i}=k\right\} .
$$

Theorem (Padrol-Sanyal 2016)

Let $I_{n, k}$ be the slack ideal of $H_{n, k}$. For $k \geq 2$, we have

$$
\operatorname{dim} V_{+}\left(I_{n, k}\right) \leq\binom{ n-1}{2}+\binom{n}{k}+2 n-1
$$

with equality for $k=2$.

n	2	3	4
4	$\mathbf{1 6} / 16.0$		
5	$\mathbf{2 5} / 25.0$		
6	$\mathbf{3 6} / 36.0$	$\mathbf{4 1} / 41.0$	
$\mathbf{7}$	$\mathbf{4 9} / 49.0$	$\mathbf{6 3} / 63.0$	
8	$\mathbf{6 4 / 6 4 . 1}$	$\mathbf{9 2} / 91.8$	$\mathbf{1 0 6} / 105.9$
9	$\mathbf{8 1} / 81.0$	$\mathbf{1 2 9} / 129.0$	$\mathbf{1 7 1} / 171.0$

Lets try it out some more

Given a poset P with base elements $\{1, \ldots, n\}$ its order polytope is

$$
\left\{x \in \mathbb{R}^{n}: 0 \leq x_{i} \leq x_{j} \leq 1 \forall i \leq_{P} j\right\} .
$$

Lets try it out some more

Given a poset P with base elements $\{1, \ldots, n\}$ its order polytope is

$$
\left\{x \in \mathbb{R}^{n}: 0 \leq x_{i} \leq x_{j} \leq 1 \forall i \leq_{P} j\right\} .
$$

Conjecture (Bogart, Chaves)

The order polytope is projectively unique if and only if there is no antichain bigger than two.

Lets try it out some more

Given a poset P with base elements $\{1, \ldots, n\}$ its order polytope is

$$
\left\{x \in \mathbb{R}^{n}: 0 \leq x_{i} \leq x_{j} \leq 1 \forall i \leq_{P} j\right\} .
$$

Conjecture (Bogart, Chaves)

The order polytope is projectively unique if and only if there is no antichain bigger than two.

We checked a few dozen examples and we saw $\operatorname{dim}(R(P))=0$ up to one decimal case everytime there was no large antichain.

Lets try it out some more

Given a poset P with base elements $\{1, \ldots, n\}$ its order polytope is

$$
\left\{x \in \mathbb{R}^{n}: 0 \leq x_{i} \leq x_{j} \leq 1 \forall i \leq_{P} j\right\}
$$

Conjecture (Bogart, Chaves)

The order polytope is projectively unique if and only if there is no antichain bigger than two.

We checked a few dozen examples and we saw $\operatorname{dim}(R(P))=0$ up to one decimal case everytime there was no large antichain.

We tried many three dimensional polytopes, projectively unique polytopes and pretty much everything we could got our hands on. All worked.

Conclusion

There are many more questions, and a more algebraic perspective.

Conclusion

There are many more questions, and a more algebraic perspective.
For further reading:

- arXiv:1708.04739 - The Slack Realization Space of a Polytope
- arXiv:1808.01692-Projectively unique polytopes and toric slack ideal with Antonio Macchia, Rekha Thomas and Amy Wiebe.

Conclusion

There are many more questions, and a more algebraic perspective.
For further reading:

- arXiv:1708.04739 - The Slack Realization Space of a Polytope
- arXiv:1808.01692 - Projectively unique polytopes and toric slack ideal with Antonio Macchia, Rekha Thomas and Amy Wiebe.

Thank you

