Slack variety of a polytope and its applications

João Gouveia

19th of October 2018 - ICERM Workshop on Real Algebraic Geometry and Optimization

João Gouveia (UC)

ICERM 2018 1 / 27

Kanstantsin Pashkovich - University of Waterloo

Richard Z. Robinson - Microsoft

Rekha Thomas - University of Washington

Antonio Macchia - Universitá degli Studi di Bari

Amy Wiebe - University of Washington

Jeffrey Pang - National University of Singapore

Ting Kei Pong - Hong Kong Polytechnic University

Section 1

Polytopes and their realization spaces

João Gouveia (UC)

Slack variety of a polytope and its applications

ICERM 2018 3 / 27

▲□ ▶ ▲□ ▶ ▲ □ ▶ ▲

Polytopes

A polytope is: a convex hull of a finite set of points in \mathbb{R}^n .

 $P = \operatorname{conv}\{p_1, p_2, \dots, p_\nu\}$ *V*-representation

<ロ> < 回 > < 回 > < 回 > <

Polytopes

A polytope is: a convex hull of a finite set of points in \mathbb{R}^n .

 $P = \operatorname{conv}\{p_1, p_2, \dots, p_\nu\}$ *V*-representation a compact intersection of half spaces in \mathbb{R}^n .

Polytopes

A polytope is: a convex hull of a finite set of points in \mathbb{R}^n .

 $P = \operatorname{conv}\{p_1, p_2, \dots, p_\nu\}$ *V*-representation a compact intersection of half spaces in \mathbb{R}^n .

A face of P is its intersection with a supporting hyperplane, and the set of faces ordered by inclusion forms the face lattice of P

We say that two polytopes are combinatorially equivalent if they have the same face lattice.

We say that two polytopes are combinatorially equivalent if they have the same face lattice.

Given a combinatorial class of polytopes, we call each polytope in that class a realization of that class.

We will call the the space of all realizations of the combinatorial class of a polytope P the realization space of P.

We say that two polytopes are combinatorially equivalent if they have the same face lattice.

Given a combinatorial class of polytopes, we call each polytope in that class a realization of that class.

We will call the the space of all realizations of the combinatorial class of a polytope P the realization space of P.

Question: How do we make such an object concrete?

There is a very direct way of modelling the realizations space.

There is a very direct way of modelling the realizations space.

Given a *d*-polytope *P* define $\mathcal{R}(P)$ to be the set of all $Q \in \mathbb{R}^{d \times v}$ such that the convex hull of their columns is combinatorially equivalent to *P*.

There is a very direct way of modelling the realizations space.

Given a *d*-polytope *P* define $\mathcal{R}(P)$ to be the set of all $Q \in \mathbb{R}^{d \times v}$ such that the convex hull of their columns is combinatorially equivalent to *P*.

There is a very direct way of modelling the realizations space.

Given a *d*-polytope *P* define $\mathcal{R}(P)$ to be the set of all $Q \in \mathbb{R}^{d \times v}$ such that the convex hull of their columns is combinatorially equivalent to *P*.

There is a very direct way of modelling the realizations space.

Given a *d*-polytope *P* define $\mathcal{R}(P)$ to be the set of all $Q \in \mathbb{R}^{d \times v}$ such that the convex hull of their columns is combinatorially equivalent to *P*.

$$\mathcal{R}(P) = \left\{ \begin{bmatrix} w_1 & x_1 & y_1 & z_1 \\ w_2 & x_2 & y_2 & z_2 \end{bmatrix} : \begin{array}{c} w, x, y, z \text{ are} \\ \text{vertices of a square} \end{array} \right\}$$

We can also mod out affine transformations by fixing an affine basis *B*.

$$\mathcal{R}(P,B) = \left\{ \begin{bmatrix} 0 & 0 & 1 & x_1 \\ 1 & 0 & 0 & x_2 \end{bmatrix} : \begin{array}{c} e_1, 0, e_2, x \text{ are} \\ \text{vertices of a square} \end{array} \right\}$$
$$= \left\{ x \in \mathbb{R}^2 : x_1, x_2 \ge 0, x_1 + x_2 \ge 1 \right\}$$

• • • • • • • • • • • •

These realization spaces are well-studied, and much is known about them.

• They are very natural;

• • • • • • • • • • • •

These realization spaces are well-studied, and much is known about them.

- They are very natural;
- They are semialgebraic;

Image: A math the second se

- They are very natural;
- They are semialgebraic;
- They are universal even for 4-polytopes [Richter-Gebert 96];

- They are very natural;
- They are semialgebraic;
- They are universal even for 4-polytopes [Richter-Gebert 96];
- The modding out of transformations is very basis dependent;

- They are very natural;
- They are semialgebraic;
- They are universal even for 4-polytopes [Richter-Gebert 96];
- The modding out of transformations is very basis dependent;
- It is not invariant under duality;

- They are very natural;
- They are semialgebraic;
- They are universal even for 4-polytopes [Richter-Gebert 96];
- The modding out of transformations is very basis dependent;
- It is not invariant under duality;
- They are difficult to compute with.

These realization spaces are well-studied, and much is known about them.

- They are very natural;
- They are semialgebraic;
- They are universal even for 4-polytopes [Richter-Gebert 96];
- The modding out of transformations is very basis dependent;
- It is not invariant under duality;
- They are difficult to compute with.

We will present an alternative construction for a model of the realization space that will be suitable to some different applications.

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

Section 2

Slack variety of a polytope

・ロト ・ 日 ・ ・ ヨ ・ ・

Let *P* be a polytope with facets given by $h_1(x) \ge 0, \ldots, h_f(x) \ge 0$, and vertices p_1, \ldots, p_v .

(日)

Let *P* be a polytope with facets given by $h_1(x) \ge 0, \ldots, h_f(x) \ge 0$, and vertices p_1, \ldots, p_v .

The slack matrix of *P* is the matrix $S_P \in \mathbb{R}^{\nu \times f}$ given by $S_P(i,j) = h_j(p_i).$

Let *P* be a polytope with facets given by $h_1(x) \ge 0, \ldots, h_f(x) \ge 0$, and vertices p_1, \ldots, p_v .

The slack matrix of *P* is the matrix $S_P \in \mathbb{R}^{\nu \times f}$ given by $S_P(i,j) = h_j(p_i).$

Regular hexagon.

Let *P* be a polytope with facets given by $h_1(x) \ge 0, \ldots, h_f(x) \ge 0$, and vertices p_1, \ldots, p_v .

The slack matrix of *P* is the matrix $S_P \in \mathbb{R}^{v \times f}$ given by $S_P(i,j) = h_j(p_i).$

Regular hexagon.

Its 6×6 slack matrix.

イロン イロン イヨン イヨン

Let *P* be a polytope with facets given by $h_1(x) \ge 0, \ldots, h_f(x) \ge 0$, and vertices p_1, \ldots, p_v .

The slack matrix of *P* is the matrix $S_P \in \mathbb{R}^{v \times f}$ given by $S_P(i,j) = h_j(p_i).$

ſ	0	0		2	2	1]
	1	0	0	1	2	2
	2	1	0	0	1	2
	2	2	1	0	0	1
	1	2	2	1	0	0
	0	1	2	2	1	0

• The slack matrix is defined only up to column scaling;

Let *P* be a polytope with facets given by $h_1(x) \ge 0, \ldots, h_f(x) \ge 0$, and vertices p_1, \ldots, p_v .

The slack matrix of *P* is the matrix $S_P \in \mathbb{R}^{v \times f}$ given by $S_P(i,j) = h_j(p_i).$

Regular hexagon.

Γ	0	0	1 0	2	2	1]
	1	0	0			2
	2	1	0	0	1	2
	2	2	1	0	0	1
	1	2	2	1	~	0
L	0	1	2	2	1	0

- The slack matrix is defined only up to column scaling;
- The slack matrix can't see affine transformations; Moreover *P* is affinely equivalent to the convex hull of the rows of *S*_{*P*}.

João Gouveia (UC)

If *P* is a *d*-polytope with \mathcal{V} -representation $\{p_1, \ldots, p_v\}$ and \mathcal{H} -representation $Ax \leq b$ then

$$S_P = \begin{bmatrix} b & -A \end{bmatrix} \begin{bmatrix} 1 & 1 & \cdots & 1 \\ p_1 & p_2 & \cdots & p_v \end{bmatrix}$$

In particular S_P has rank d + 1.

If *P* is a *d*-polytope with \mathcal{V} -representation $\{p_1, \ldots, p_v\}$ and \mathcal{H} -representation $Ax \leq b$ then

$$S_P = \begin{bmatrix} b & -A \end{bmatrix} \begin{bmatrix} 1 & 1 & \cdots & 1 \\ p_1 & p_2 & \cdots & p_\nu \end{bmatrix}$$

In particular S_P has rank d + 1.

Any polytope of the same combinatorial class of *P* must have a slack matrix with the same zero-pattern.

・ロン ・回 と ・ ヨン ・ ヨン

If *P* is a *d*-polytope with \mathcal{V} -representation $\{p_1, \ldots, p_v\}$ and \mathcal{H} -representation $Ax \leq b$ then

$$S_P = \begin{bmatrix} b & -A \end{bmatrix} \begin{bmatrix} 1 & 1 & \cdots & 1 \\ p_1 & p_2 & \cdots & p_\nu \end{bmatrix}$$

In particular S_P has rank d + 1.

Any polytope of the same combinatorial class of *P* must have a slack matrix with the same zero-pattern.

Theorem (GGKPRT, 2013)

A nonnegative matrix S is the slack matrix of some realization of P if and only if

•
$$supp(S) = supp(S_P);$$

$$ank(S) = rank(S_P) = d + 1;$$

If *P* is a *d*-polytope with \mathcal{V} -representation $\{p_1, \ldots, p_v\}$ and \mathcal{H} -representation $Ax \leq b$ then

$$S_P = \begin{bmatrix} b & -A \end{bmatrix} \begin{bmatrix} 1 & 1 & \cdots & 1 \\ p_1 & p_2 & \cdots & p_\nu \end{bmatrix}$$

In particular S_P has rank d + 1.

Any polytope of the same combinatorial class of *P* must have a slack matrix with the same zero-pattern.

Theorem (GGKPRT, 2013)

A nonnegative matrix S is the slack matrix of some realization of P if and only if

•
$$supp(S) = supp(S_P);$$

$$ank(S) = rank(S_P) = d + 1;$$

Sthe all ones vector lies in the column span of S.

There is a one-to-one correspondence between matrices with those properties (up to column scaling) and realizations of P (up to affine equivalence).

João Gouveia (UC)

Projective equivalence

In general, we will be interested in modding out projective transformations.

$$Q \stackrel{p}{=} P \Leftrightarrow Q = \phi(P), \ \phi(x) = \frac{Ax+b}{c^{\mathsf{T}}+d}, \ \det\left[\begin{array}{cc} A & b\\ c^{\mathsf{T}}x & d \end{array}\right] \neq 0$$

イロト イタト イヨト イヨ

Projective equivalence

In general, we will be interested in modding out projective transformations.

$$Q \stackrel{p}{=} P \Leftrightarrow Q = \phi(P), \ \phi(x) = \frac{Ax+b}{c^{\intercal}+d}, \ \det \begin{bmatrix} A & b \\ c^{\intercal}x & d \end{bmatrix} \neq 0$$

All convex quadrilaterals are projectively equivalent to a square. A square is projectively unique.

Projective equivalence

In general, we will be interested in modding out projective transformations.

$$Q \stackrel{p}{=} P \Leftrightarrow Q = \phi(P), \ \phi(x) = \frac{Ax+b}{c^{\intercal}+d}, \ \det \begin{bmatrix} A & b \\ c^{\intercal}x & d \end{bmatrix} \neq 0$$

All convex quadrilaterals are projectively equivalent to a square. A square is projectively unique.

Slack matrices offer a natural way of quotient projective transformations.

Theorem (GPRT, 2017)

 $Q \stackrel{p}{=} P \Leftrightarrow S_Q = D_v S_P D_f$ for some positive diagonal matrices D_v, D_f

(ロ) (部) (注) (注)

Slack ideal

Let *P* be a *d*-polytope and $S_P(x)$ a symbolic matrix with the same support as S_P . Then the slack ideal of *P* is

٠

<ロ> < 回 > < 回 > < 回 > <

$$I_P = \langle (d+2) \text{-minors of } S_P(x) \rangle$$

Let *P* be a *d*-polytope and $S_P(x)$ a symbolic matrix with the same support as S_P . Then the slack ideal of *P* is

$$I_P = \langle (d+2) \text{-minors of } S_P(x) \rangle : (\prod x_i)^{\infty}$$

(日)

Let *P* be a *d*-polytope and $S_P(x)$ a symbolic matrix with the same support as S_P . Then the slack ideal of *P* is

$$I_P = \langle (d+2) \text{-minors of } S_P(x) \rangle : (\prod x_i)^{\infty}$$

イロト イヨト イヨト イ

Let *P* be a *d*-polytope and $S_P(x)$ a symbolic matrix with the same support as S_P . Then the slack ideal of *P* is

$$I_P = \langle (d+2) \text{-minors of } S_P(x) \rangle : (\prod x_i)^{\infty}.$$

Let *P* be a *d*-polytope and $S_P(x)$ a symbolic matrix with the same support as S_P . Then the slack ideal of *P* is

$$I_P = \langle (d+2) \text{-minors of } S_P(x) \rangle : (\prod x_i)^{\infty}.$$

イロト イポト イヨト イヨト

Let *P* be a *d*-polytope and $S_P(x)$ a symbolic matrix with the same support as S_P . Then the slack ideal of *P* is

$$I_P = \langle (d+2) \text{-minors of } S_P(x) \rangle : (\prod x_i)^{\infty}.$$

$$S_{P} = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \quad S_{P}(x) = \begin{pmatrix} x_{1} & x_{2} & 0 & 0 & 0 \\ 0 & x_{3} & x_{4} & 0 & 0 \\ 0 & 0 & x_{5} & x_{6} & 0 \\ x_{7} & 0 & 0 & x_{8} & 0 \\ 0 & 0 & 0 & 0 & x_{9} \end{pmatrix}$$

$$I_P = \langle x_1 x_3 x_5 x_8 x_9 - x_2 x_4 x_6 x_7 x_9 \rangle : (\prod x_i)^{\infty}$$

< ロ > < 回 > < 回 > < 回 > < 回</p>

Let *P* be a *d*-polytope and $S_P(x)$ a symbolic matrix with the same support as S_P . Then the slack ideal of *P* is

$$I_P = \langle (d+2) \text{-minors of } S_P(x) \rangle : (\prod x_i)^{\infty}.$$

$$S_{P} = \begin{pmatrix} 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix} \quad S_{P}(x) = \begin{pmatrix} x_{1} & x_{2} & 0 & 0 & 0 \\ 0 & x_{3} & x_{4} & 0 & 0 \\ 0 & 0 & x_{5} & x_{6} & 0 \\ x_{7} & 0 & 0 & x_{8} & 0 \\ 0 & 0 & 0 & 0 & x_{9} \end{pmatrix}$$

$$I_P = \langle x_1 x_3 x_5 x_8 x_9 - x_2 x_4 x_6 x_7 x_9 \rangle : (\prod x_i)^{\infty} = \langle x_1 x_3 x_5 x_8 - x_2 x_4 x_6 x_7 \rangle$$

▲□ ▶ ▲□ ▶ ▲ □ ▶ ▲

- $\mathcal{V}(I_P)$ is the slack variety of *P*.
- Positive part of slack variety: $\mathcal{V}_+(I_P) = \mathcal{V}(I_P) \cap \mathbb{R}^n_+$

(日)

- $\mathcal{V}(I_P)$ is the slack variety of *P*.
- Positive part of slack variety: $\mathcal{V}_+(I_P) = \mathcal{V}(I_P) \cap \mathbb{R}^n_+$
- $\mathbb{R}_{>0}^{\nu} \times \mathbb{R}_{>0}^{f}$ acts on $\mathcal{V}_{+}(I_{P})$:

 $D_{v}\mathbf{s}D_{f} \in \mathcal{V}_{+}(I_{P})$ for every $\mathbf{s} \in \mathcal{V}_{+}(I_{P})$, D_{v}, D_{f} positive diagonal matrices

- $\mathcal{V}(I_P)$ is the slack variety of *P*.
- Positive part of slack variety: $\mathcal{V}_+(I_P) = \mathcal{V}(I_P) \cap \mathbb{R}^n_+$
- $\mathbb{R}_{>0}^{\nu} \times \mathbb{R}_{>0}^{f}$ acts on $\mathcal{V}_{+}(I_{P})$:

 $D_{\nu}\mathbf{s}D_{f} \in \mathcal{V}_{+}(I_{P})$ for every $\mathbf{s} \in \mathcal{V}_{+}(I_{P})$, D_{ν}, D_{f} positive diagonal matrices

Theorem (GMTW, 2017)

 $\mathcal{V}_+(I_P)/(\mathbb{R}^{\nu}_{>0} \times \mathbb{R}^f_{>0}) \stackrel{\text{1:1}}{\longleftrightarrow} classes of projectively equivalent polytopes of the same combinatorial type as$ *P*.

・ロト ・四ト ・ヨト ・ヨト

- $\mathcal{V}(I_P)$ is the slack variety of *P*.
- Positive part of slack variety: $\mathcal{V}_+(I_P) = \mathcal{V}(I_P) \cap \mathbb{R}^n_+$
- $\mathbb{R}_{>0}^{\nu} \times \mathbb{R}_{>0}^{f}$ acts on $\mathcal{V}_{+}(I_{P})$:

 $D_{v}\mathbf{s}D_{f} \in \mathcal{V}_{+}(I_{P})$ for every $\mathbf{s} \in \mathcal{V}_{+}(I_{P})$, D_{v}, D_{f} positive diagonal matrices

Theorem (GMTW, 2017)

 $\mathcal{V}_+(I_P)/(\mathbb{R}^{\nu}_{>0} \times \mathbb{R}^f_{>0}) \stackrel{\text{1:1}}{\longleftrightarrow} classes of projectively equivalent polytopes of the same combinatorial type as$ *P*.

We call $\mathcal{V}_+(I_P)/(\mathbb{R}^{\nu}_{>0} \times \mathbb{R}^f_{>0})$ the slack realization space of *P*.

・ロト ・ 御 ト ・ ヨ ト ・ ヨ ト

$$x = \begin{bmatrix} p_1 & \cdots & p_v \end{bmatrix} \in \mathcal{R}(P)$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

$$x = \begin{bmatrix} p_1 & \cdots & p_\nu \end{bmatrix} \in \mathcal{R}(P) \quad \rightarrow \qquad \overline{x} = \begin{bmatrix} 1 & \cdots & 1 \\ p_1 & \cdots & p_\nu \end{bmatrix}$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

$$x = \begin{bmatrix} p_1 & \cdots & p_\nu \end{bmatrix} \in \mathcal{R}(P) \quad \rightarrow \qquad \overline{x} = \begin{bmatrix} 1 & \cdots & 1 \\ p_1 & \cdots & p_\nu \end{bmatrix}$$

row space of $\overline{x} \in \operatorname{Gr}_{d+1}(\mathbb{R}^{\nu})$

< ロ > < 部 > < き > < き</p>

$$x = \begin{bmatrix} p_1 & \cdots & p_\nu \end{bmatrix} \in \mathcal{R}(P) \quad \rightarrow \qquad \overline{x} = \begin{bmatrix} 1 & \cdots & 1 \\ p_1 & \cdots & p_\nu \end{bmatrix}$$

$$\tilde{x} = (\det(\bar{x}_I))_I \in \mathbb{P}^{\binom{\nu}{d}-1} \quad \leftarrow \quad \text{row space of } \bar{x} \in \operatorname{Gr}_{d+1}(\mathbb{R}^{\nu})$$

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

$$x = \begin{bmatrix} p_1 & \cdots & p_v \end{bmatrix} \in \mathcal{R}(P) \quad \rightarrow \qquad \overline{x} = \begin{bmatrix} 1 & \cdots & 1 \\ p_1 & \cdots & p_v \end{bmatrix}$$

 $\tilde{x} = (\det(\bar{x}_I))_I \in \mathbb{P}^{\binom{\nu}{d}-1} \quad \leftarrow \quad \text{row space of } \bar{x} \in \operatorname{Gr}_{d+1}(\mathbb{R}^{\nu})$

This sends $\mathcal{R}(P)$ bijectively up to affine transformations into a subset of the Plücker embedding of $\operatorname{Gr}_{d+1}(\mathbb{R}^{\nu})$ cut out (mostly) from positivity, negativity and nullity conditions on some of the variables.

・ロト ・四ト ・ヨト ・ヨト

$$x = \begin{bmatrix} p_1 & \cdots & p_v \end{bmatrix} \in \mathcal{R}(P) \quad \rightarrow \qquad \bar{x} = \begin{bmatrix} 1 & \cdots & 1 \\ p_1 & \cdots & p_v \end{bmatrix}$$

 $\tilde{x} = (\det(\bar{x}_I))_I \in \mathbb{P}^{\binom{\nu}{d}-1} \quad \leftarrow \quad \text{row space of } \bar{x} \in \operatorname{Gr}_{d+1}(\mathbb{R}^{\nu})$

This sends $\mathcal{R}(P)$ bijectively up to affine transformations into a subset of the Plücker embedding of $\operatorname{Gr}_{d+1}(\mathbb{R}^{\nu})$ cut out (mostly) from positivity, negativity and nullity conditions on some of the variables.

If for every facet k of P we pick a set I_k of d - 1 spanning vertices we can define a matrix

$$(S(\tilde{x}))_{k,l} = \pm \tilde{x}_{(I_k,l)}$$

This is a slack matrix of *P* and its row space is \bar{x} .

Section 3

Applications

João Gouveia (UC)

ICERM 2018 15 / 27

A semidefinite representation of size k of a d-polytope P is a description

$$P = \left\{ x \in \mathbb{R}^d \mid \exists y \text{ s.t. } A_0 + \sum A_i x_i + \sum B_i y_i \succeq 0 \right\}$$

where A_i and B_i are $k \times k$ real symmetric matrices.

• • • • • • • • • • • •

A semidefinite representation of size k of a d-polytope P is a description

$$P = \left\{ x \in \mathbb{R}^d \mid \exists y \text{ s.t. } A_0 + \sum A_i x_i + \sum B_i y_i \succeq 0 \right\}$$

where A_i and B_i are $\mathbf{k} \times \mathbf{k}$ real symmetric matrices.

If we allow A_i and B_i to be hermitian, we call it a complex semidefinite representation.

A semidefinite representation of size k of a d-polytope P is a description

$$P = \left\{ x \in \mathbb{R}^d \mid \exists y \text{ s.t. } A_0 + \sum A_i x_i + \sum B_i y_i \succeq 0 \right\}$$

where A_i and B_i are $\mathbf{k} \times \mathbf{k}$ real symmetric matrices.

If we allow A_i and B_i to be hermitian, we call it a complex semidefinite representation.

Projection on x_1 and x_2 of

$$\begin{bmatrix} 1 & x_1 & x_2 \\ x_1 & x_1 & y \\ x_2 & y & x_2 \end{bmatrix} \succeq 0$$

・ロト ・ 日 ・ ・ ヨ ・ ・

A semidefinite representation of size k of a d-polytope P is a description

$$P = \left\{ x \in \mathbb{R}^d \mid \exists y \text{ s.t. } A_0 + \sum A_i x_i + \sum B_i y_i \succeq 0 \right\}$$

where A_i and B_i are $\mathbf{k} \times \mathbf{k}$ real symmetric matrices.

If we allow A_i and B_i to be hermitian, we call it a complex semidefinite representation.

Projection on x_1 and x_2 of

$$\begin{bmatrix} 1 & x_1 & x_2 \\ x_1 & x_1 & y \\ x_2 & y & x_2 \end{bmatrix} \succeq 0$$

A semidefinite representation of size k of a d-polytope P is a description

$$P = \left\{ x \in \mathbb{R}^d \mid \exists y \text{ s.t. } A_0 + \sum A_i x_i + \sum B_i y_i \succeq 0 \right\}$$

where A_i and B_i are $\mathbf{k} \times \mathbf{k}$ real symmetric matrices.

If we allow A_i and B_i to be hermitian, we call it a complex semidefinite representation.

A semidefinite representation of size k of a d-polytope P is a description

$$P = \left\{ x \in \mathbb{R}^d \mid \exists y \text{ s.t. } A_0 + \sum A_i x_i + \sum B_i y_i \succeq 0 \right\}$$

where A_i and B_i are $\mathbf{k} \times \mathbf{k}$ real symmetric matrices.

If we allow A_i and B_i to be hermitian, we call it a complex semidefinite representation.

Optimizing over such sets is "easy": we want small representations. Turns out the smallest possible size is d + 1. When does that happen?

• A polytope P is psd-minimal $\Leftrightarrow \exists S_p(y) \in \mathcal{V}_{\mathbb{R}}(I_P)$ such that $S_P = S_P(y^2)$.

• A polytope P is $psd_{\mathbb{C}}$ -minimal $\Leftrightarrow \exists S_p(y) \in \mathcal{V}_{\mathbb{C}}(I_P)$ such that $S_P = S_P(|y|^2)$

- A polytope P is psd-minimal $\Leftrightarrow \exists S_p(y) \in \mathcal{V}_{\mathbb{R}}(I_P)$ such that $S_P = S_P(y^2)$.
- A polytope P is $psd_{\mathbb{C}}$ -minimal $\Leftrightarrow \exists S_p(y) \in \mathcal{V}_{\mathbb{C}}(I_P)$ such that $S_P = S_P(|y|^2)$

Lemma If I_P has a trinomial $x^a + x^b - x^c$ then P is not psd-minimal.

- A polytope P is psd-minimal $\Leftrightarrow \exists S_p(y) \in \mathcal{V}_{\mathbb{R}}(I_P)$ such that $S_P = S_P(y^2)$.
- A polytope P is $psd_{\mathbb{C}}$ -minimal $\Leftrightarrow \exists S_p(y) \in \mathcal{V}_{\mathbb{C}}(I_P)$ such that $S_P = S_P(|y|^2)$

Lemma If I_P has a trinomial $x^a + x^b - x^c$ then P is not psd-minimal.

• In \mathbb{R}^2 (2 types), \mathbb{R}^3 (6 types) this recovers [GRT 2013].

- A polytope P is psd-minimal $\Leftrightarrow \exists S_p(y) \in \mathcal{V}_{\mathbb{R}}(I_P)$ such that $S_P = S_P(y^2)$.
- A polytope P is $psd_{\mathbb{C}}$ -minimal $\Leftrightarrow \exists S_p(y) \in \mathcal{V}_{\mathbb{C}}(I_P)$ such that $S_P = S_P(|y|^2)$

Lemma If I_P has a trinomial $x^a + x^b - x^c$ then P is not psd-minimal.

- In \mathbb{R}^2 (2 types), \mathbb{R}^3 (6 types) this recovers [GRT 2013].
- In \mathbb{R}^4 (31 types) this allowed the classification [GPRT, 2017].

- A polytope P is psd-minimal $\Leftrightarrow \exists S_p(y) \in \mathcal{V}_{\mathbb{R}}(I_P)$ such that $S_P = S_P(y^2)$.
- A polytope P is $psd_{\mathbb{C}}$ -minimal $\Leftrightarrow \exists S_p(y) \in \mathcal{V}_{\mathbb{C}}(I_P)$ such that $S_P = S_P(|y|^2)$

Lemma If I_P has a trinomial $x^a + x^b - x^c$ then P is not psd-minimal.

- In \mathbb{R}^2 (2 types), \mathbb{R}^3 (6 types) this recovers [GRT 2013].
- In \mathbb{R}^4 (31 types) this allowed the classification [GPRT, 2017].

Lemma Suppose P is $psd_{\mathbb{C}}$ -minimal, i.e. $S_P = S_P(|y|^2)$. If I_P has a trinomial $x^a + x^b - x^c$ then $\Re(y^a \overline{y^b}) = 0$.

- A polytope P is psd-minimal $\Leftrightarrow \exists S_p(y) \in \mathcal{V}_{\mathbb{R}}(I_P)$ such that $S_P = S_P(y^2)$.
- A polytope P is $psd_{\mathbb{C}}$ -minimal $\Leftrightarrow \exists S_p(y) \in \mathcal{V}_{\mathbb{C}}(I_P)$ such that $S_P = S_P(|y|^2)$

Lemma If I_P has a trinomial $x^a + x^b - x^c$ then P is not psd-minimal.

- In \mathbb{R}^2 (2 types), \mathbb{R}^3 (6 types) this recovers [GRT 2013].
- In \mathbb{R}^4 (31 types) this allowed the classification [GPRT, 2017].

Lemma Suppose P is $psd_{\mathbb{C}}$ -minimal, i.e. $S_P = S_P(|y|^2)$. If I_P has a trinomial $x^a + x^b - x^c$ then $\Re(y^a \overline{y^b}) = 0$.

• In \mathbb{R}^2 (3 types), [GGS 2017, CG 2018].

- A polytope P is psd-minimal $\Leftrightarrow \exists S_p(y) \in \mathcal{V}_{\mathbb{R}}(I_P)$ such that $S_P = S_P(y^2)$.
- A polytope P is $psd_{\mathbb{C}}$ -minimal $\Leftrightarrow \exists S_p(y) \in \mathcal{V}_{\mathbb{C}}(I_P)$ such that $S_P = S_P(|y|^2)$

Lemma If I_P has a trinomial $x^a + x^b - x^c$ then P is not psd-minimal.

- In \mathbb{R}^2 (2 types), \mathbb{R}^3 (6 types) this recovers [GRT 2013].
- In \mathbb{R}^4 (31 types) this allowed the classification [GPRT, 2017].

Lemma Suppose P is $psd_{\mathbb{C}}$ -minimal, i.e. $S_P = S_P(|y|^2)$. If I_P has a trinomial $x^a + x^b - x^c$ then $\Re(y^a \overline{y^b}) = 0$.

- In \mathbb{R}^2 (3 types), [GGS 2017, CG 2018].
- In \mathbb{R}^3 who knows?...

A combinatorial polytope is *rational* if it has a realization in which all vertices have rational coordinates.

A combinatorial polytope is *rational* if it has a realization in which all vertices have rational coordinates.

Lemma A polytope P is rational $\Leftrightarrow \mathcal{V}_+(I_P)$ has a rational point.

A combinatorial polytope is *rational* if it has a realization in which all vertices have rational coordinates.

Lemma A polytope P is rational $\Leftrightarrow \mathcal{V}_+(I_P)$ has a rational point.

We consider the following point-line arrangement in the plane [Grünbaum, 1967]:

$$S_P(x) = \begin{pmatrix} x_1 & 0 & x_2 & 0 & x_3 & x_4 & x_5 & x_6 & 0 \\ x_7 & x_8 & x_9 & 0 & x_{10} & 0 & 0 & x_{11} & x_{12} \\ x_{13} & x_{14} & 0 & x_{15} & x_{16} & x_{17} & x_{18} & 0 & 0 \\ x_{19} & x_{20} & 0 & x_{21} & 0 & 0 & x_{22} & x_{23} & x_{24} \\ x_{25} & 0 & x_{26} & x_{27} & 0 & x_{28} & 0 & 0 & x_{29} \\ 0 & 0 & x_{30} & x_{31} & x_{32} & 0 & x_{33} & x_{34} & x_{35} \\ 0 & x_{36} & 0 & x_{37} & x_{38} & x_{39} & 0 & x_{40} & x_{41} \\ 0 & x_{42} & x_{43} & 0 & x_{44} & x_{45} & x_{46} & 0 & x_{47} \\ 0 & x_{48} & x_{49} & x_{50} & 0 & x_{51} & x_{52} & x_{53} & 0 \end{pmatrix}$$

A combinatorial polytope is *rational* if it has a realization in which all vertices have rational coordinates.

Lemma A polytope P is rational $\Leftrightarrow \mathcal{V}_+(I_P)$ has a rational point.

We consider the following point-line arrangement in the plane [Grünbaum, 1967]:

Scaling rows and columns to set some variables to 1 (this does not affect rationality):

 $x_{46}^2 + x_{46} - 1 \in I_P$

< ロ > < 四 > < 臣 > < 臣 > 、

A combinatorial polytope is *rational* if it has a realization in which all vertices have rational coordinates.

Lemma A polytope P is rational $\Leftrightarrow \mathcal{V}_+(I_P)$ has a rational point.

We consider the following point-line arrangement in the plane [Grünbaum, 1967]:

Scaling rows and columns to set some variables to 1 (this does not affect rationality):

$$x_{46}^2 + x_{46} - 1 \in I_P \Rightarrow x_{46} = \frac{-1 \pm \sqrt{5}}{2} \Rightarrow$$
 no rational realizations

イロト イ部ト イヨト イヨト

A combinatorial polytope is *rational* if it has a realization in which all vertices have rational coordinates.

Lemma A polytope P is rational $\Leftrightarrow \mathcal{V}_+(I_P)$ has a rational point.

We consider the following point-line arrangement in the plane [Grünbaum, 1967]:

Scaling rows and columns to set some variables to 1 (this does not affect rationality):

$$x_{46}^2 + x_{46} - 1 \in I_P \Rightarrow x_{46} = \frac{-1 \pm \sqrt{5}}{2} \Rightarrow$$
 no rational realizations

This can be extended to the ideal of the Perles polytope (d=8, v=12, f=34) It is not rational but also its slack ideal is not prime.

João Gouveia (UC)

• • • • • • • • • • • •

[Altshuler, Steinberg, 1985]: 4-polytopes and 3-spheres with 8 vertices.

The smallest non-polytopal 3-sphere has vertex-facet non-incidence matrix

	10	0	0	0	0	x_1	x_2	x_3	x_4	<i>x</i> ₅ `	<hr/>
$S_P(x) =$	0	0	0	0	x_6	<i>x</i> ₇	0	Ő	<i>x</i> ₈	<i>x</i> 9	1
	0	0	x_{10}	<i>x</i> ₁₁	x_{12}	0	0	0	Ő	x13	
	0	0	<i>x</i> ₁₄				<i>x</i> ₁₆	<i>x</i> ₁₇	0	0	
	0	x_{18}	0	x_{19}	0	0	0	x_{20}	x_{21}	<i>x</i> ₂₂	
	<i>x</i> ₂₃	0	<i>x</i> ₂₄	0	0	<i>x</i> ₂₅	<i>x</i> ₂₆	Ō	Ō	0	
	x27	x_{28}	0	0	<i>x</i> ₂₉	0	0	0	0	0	
	$\langle x_{30} \rangle$		0	0	Ō	0	<i>x</i> ₃₂	<i>x</i> ₃₃	<i>x</i> ₃₄	0,	/

[Altshuler, Steinberg, 1985]: 4-polytopes and 3-spheres with 8 vertices.

The smallest non-polytopal 3-sphere has vertex-facet non-incidence matrix

$$S_P(x) = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & x_1 & x_2 & x_3 & x_4 & x_5 \\ 0 & 0 & 0 & 0 & x_6 & x_7 & 0 & 0 & x_8 & x_9 \\ 0 & 0 & x_{10} & x_{11} & x_{12} & 0 & 0 & 0 & 0 & x_{13} \\ 0 & 0 & x_{14} & x_{15} & 0 & 0 & x_{16} & x_{17} & 0 & 0 \\ 0 & x_{18} & 0 & x_{19} & 0 & 0 & x_{20} & x_{21} & x_{22} \\ x_{23} & 0 & x_{24} & 0 & 0 & x_{25} & x_{26} & 0 & 0 & 0 \\ x_{27} & x_{28} & 0 & 0 & x_{29} & 0 & 0 & 0 & 0 \\ x_{30} & x_{31} & 0 & 0 & 0 & 0 & x_{32} & x_{33} & x_{34} & 0 \end{pmatrix}$$

Proposition *P* is realizable $\iff \mathcal{V}_+(I_P) \neq \emptyset$.

[Altshuler, Steinberg, 1985]: 4-polytopes and 3-spheres with 8 vertices.

The smallest non-polytopal 3-sphere has vertex-facet non-incidence matrix

$$S_P(x) = \begin{pmatrix} 0 & 0 & 0 & 0 & 0 & x_1 & x_2 & x_3 & x_4 & x_5 \\ 0 & 0 & 0 & 0 & x_6 & x_7 & 0 & 0 & x_8 & x_9 \\ 0 & 0 & x_{10} & x_{11} & x_{12} & 0 & 0 & 0 & 0 & x_{13} \\ 0 & 0 & x_{14} & x_{15} & 0 & 0 & x_{16} & x_{17} & 0 & 0 \\ 0 & x_{18} & 0 & x_{19} & 0 & 0 & 0 & x_{20} & x_{21} & x_{22} \\ x_{23} & 0 & x_{24} & 0 & 0 & x_{25} & x_{26} & 0 & 0 & 0 \\ x_{27} & x_{28} & 0 & 0 & x_{29} & 0 & 0 & 0 & 0 \\ x_{30} & x_{31} & 0 & 0 & 0 & 0 & x_{32} & x_{33} & x_{34} & 0 \end{pmatrix}$$

Proposition *P* is realizable $\iff \mathcal{V}_+(I_P) \neq \emptyset$.

In this case, $I_P = \langle 1 \rangle \Rightarrow$ no rank 5 matrix with this support \Rightarrow no polytope.

ヘロア ヘロア ヘヨア ヘヨア

Section 4

One more application

Dimension of the realization space

How much freedom does a certain combinatorial structure give us?

・ロト ・ 御 ト ・ ヨ ト ・ ヨ

Dimension of the realization space

How much freedom does a certain combinatorial structure give us?

Given a polytope $P \subseteq \mathbb{R}^n$, what is the dimension of $\mathcal{R}(P)$?

Given a polytope $P \subseteq \mathbb{R}^n$, what is the dimension of $\mathcal{R}(P)$?

For n = 2, clearly dim $(\mathcal{R}(P)) = 2v$.

Given a polytope $P \subseteq \mathbb{R}^n$, what is the dimension of $\mathcal{R}(P)$?

For n = 2, clearly dim $(\mathcal{R}(P)) = 2v$.

For n = 3 we have dim $(\mathcal{R}(P)) = v + f + 4$. [Steinitz]

Given a polytope $P \subseteq \mathbb{R}^n$, what is the dimension of $\mathcal{R}(P)$?

- For n = 2, clearly dim $(\mathcal{R}(P)) = 2v$.
- For n = 3 we have dim $(\mathcal{R}(P)) = v + f + 4$. [Steinitz]

For n > 3 there are very few general results/tools.

Given a polytope $P \subseteq \mathbb{R}^n$, what is the dimension of $\mathcal{R}(P)$?

- For n = 2, clearly dim $(\mathcal{R}(P)) = 2v$.
- For n = 3 we have $\dim(\mathcal{R}(P)) = v + f + 4$. [Steinitz]

For n > 3 there are very few general results/tools.

 $\dim(\mathcal{R}(P)) \leftrightarrow \dim(\mathcal{V}_+(I_P))$

Given a polytope $P \subseteq \mathbb{R}^n$, what is the dimension of $\mathcal{R}(P)$?

- For n = 2, clearly dim $(\mathcal{R}(P)) = 2v$.
- For n = 3 we have $\dim(\mathcal{R}(P)) = v + f + 4$. [Steinitz]

For n > 3 there are very few general results/tools.

 $\dim(\mathcal{R}(P)) \leftrightarrow \dim(\mathcal{V}_+(I_P))$

Can we compute the dimension of $\mathcal{V}(I_P)$?

イロト イポト イヨト イヨト

João Gouveia (UC)

< ロ > < 回 > < 回 > < 回 > < 回 >

イロン イボン イヨン イヨン

Too hard: $\mathcal{V}(I_P)$ has around $v \times f$ entries.

< ロ > < 部 > < き > < き</p>

• Exact Computational Algebra Too hard: $\mathcal{V}(I_P)$ has around $v \times f$ entries.

② Statistical topology from samples

・ロト ・ 御 ト ・ ヨ ト ・ ヨ

Too hard: $\mathcal{V}(I_P)$ has around $v \times f$ entries.

Statistical topology from samples

Implies a sufficiently representative sample of polytopes with a given combinatorial structure.

イロン イボン イヨン イヨン

Too hard: $\mathcal{V}(I_P)$ has around $v \times f$ entries.

② Statistical topology from samples

Implies a sufficiently representative sample of polytopes with a given combinatorial structure. Hopeless in general.

Too hard: $\mathcal{V}(I_P)$ has around $v \times f$ entries.

• Statistical topology from samples Implies a sufficiently representative sample of polytopes with a given combinatorial structure. Hopeless in general.

However

Solution Maybe we can use the structure of the variety to do enough?

Perturbing a polytope

Let us go to a related more basic problem:

How to perturb a polytope while preserving the combinatorics?

How to perturb a polytope while preserving the combinatorics?

Given a polytope *P*, we can always add noise to the entries of S_P but then we are away from $\mathcal{V}(I_P)$.

• • • • • • • • • • • •

How to perturb a polytope while preserving the combinatorics?

Given a polytope *P*, we can always add noise to the entries of S_P but then we are away from $\mathcal{V}(I_P)$. Can we project it back?

How to perturb a polytope while preserving the combinatorics?

Given a polytope *P*, we can always add noise to the entries of S_P but then we are away from $\mathcal{V}(I_P)$. Can we project it back? Yes!!! By using the fact that

 $\mathcal{V}(I_P) = \{X : \operatorname{rank}(X) \le d+1\} \cap L.$

How to perturb a polytope while preserving the combinatorics?

Given a polytope *P*, we can always add noise to the entries of S_P but then we are away from $\mathcal{V}(I_P)$. Can we project it back? Yes!!! By using the fact that

$$\mathcal{V}(I_P) = \{X : \operatorname{rank}(X) \le d+1\} \cap L.$$

Proto-theorem - GPP sometime in the future

In general, Dykstra's alternate projection algorithm will applied to $\overline{S} = S_P$ +noise will converge to the projection of \overline{S} in $\mathcal{V}(I_P)$.

How to perturb a polytope while preserving the combinatorics?

Given a polytope *P*, we can always add noise to the entries of S_P but then we are away from $\mathcal{V}(I_P)$. Can we project it back? Yes!!! By using the fact that

$$\mathcal{V}(I_P) = \{X : \operatorname{rank}(X) \le d+1\} \cap L.$$

Proto-theorem - GPP sometime in the future

In general, Dykstra's alternate projection algorithm will applied to $\overline{S} = S_P$ +noise will converge to the projection of \overline{S} in $\mathcal{V}(I_P)$.

This is not a full answer to the question, but might be enough.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Enter the statistics

Idea:

1	Start	with	S_P	\in	$\mathcal{V}_{\mathbb{R}}$	(I_P));
---	-------	------	-------	-------	----------------------------	---------	----

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- Start with $S_P \in \mathcal{V}_{\mathbb{R}}(I_P)$;
- **2** Add noise to each entry following $N(0, \epsilon)$ distribution;

・ロト ・ 御 ト ・ ヨ ト ・ ヨ

- Start with $S_P \in \mathcal{V}_{\mathbb{R}}(I_P)$;
- **2** Add noise to each entry following $N(0, \epsilon)$ distribution;
- Solution Project the perturbed point to x in the variety and record the distance to S_P ;

- Start with $S_P \in \mathcal{V}_{\mathbb{R}}(I_P)$;
- Solution: Add noise to each entry following $N(0, \epsilon)$ distribution;
- **O** Project the perturbed point to x in the variety and record the distance to S_P ;
- Repeat ad nauseam

• • • • • • • • • • • • • •

- Start with $S_P \in \mathcal{V}_{\mathbb{R}}(I_P)$;
- Solution: Add noise to each entry following $N(0, \epsilon)$ distribution;
- Solution Project the perturbed point to x in the variety and record the distance to S_P ;
- Repeat ad nauseam

What is happening?

As $\epsilon \to 0$ we are essentially projecting onto the tangent space in S_P .

(日)

- Start with $S_P \in \mathcal{V}_{\mathbb{R}}(I_P)$;
- Solution: Add noise to each entry following $N(0, \epsilon)$ distribution;
- Project the perturbed point to x in the variety and record the distance to S_P ;
- Repeat ad nauseam

What is happening?

As $\epsilon \to 0$ we are essentially projecting onto the tangent space in S_P .

Proto-theorem - GPP sometime in the future

As $\varepsilon \to 0$,

$$\frac{1}{\varepsilon^2} d(x, S_P)^2 \to \chi^2(\dim \mathcal{V}_{\mathbb{R}}(I_P)).$$

- Start with $S_P \in \mathcal{V}_{\mathbb{R}}(I_P)$;
- Solution: Add noise to each entry following $N(0, \epsilon)$ distribution;
- Project the perturbed point to x in the variety and record the distance to S_P ;
- Repeat ad nauseam

What is happening?

As $\epsilon \to 0$ we are essentially projecting onto the tangent space in S_P .

Proto-theorem - GPP sometime in the future

As $\varepsilon \to 0$,

$$\frac{1}{\varepsilon^2} d(x, S_P)^2 \to \chi^2(\dim \mathcal{V}_{\mathbb{R}}(I_P)).$$

In particular the average distance squared should converge to the dimension!

イロト イポト イヨト イヨト

João Gouveia (UC)

(日)

Lets try it out

Recall that the hypersimplex $H_{n,k}$ is defined as

$$H_{n,k} = \{x \in [0,1]^n : \sum x_i = k\}.$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日

Lets try it out

Recall that the hypersimplex $H_{n,k}$ is defined as

$$H_{n,k} = \{x \in [0,1]^n : \sum x_i = k\}.$$

Theorem (Padrol-Sanyal 2016)

Let $I_{n,k}$ be the slack ideal of $H_{n,k}$. For $k \ge 2$, we have

$$\dim V_+(I_{n,k}) \le \binom{n-1}{2} + \binom{n}{k} + 2n - 1$$

with equality for k = 2.

・ロト ・ 日 ・ ・ ヨ ・ ・

Lets try it out

Recall that the hypersimplex $H_{n,k}$ is defined as

$$H_{n,k} = \{x \in [0,1]^n : \sum x_i = k\}.$$

Theorem (Padrol-Sanyal 2016)

Let $I_{n,k}$ be the slack ideal of $H_{n,k}$. For $k \ge 2$, we have

$$\dim V_+(I_{n,k}) \le \binom{n-1}{2} + \binom{n}{k} + 2n - 1$$

with equality for k = 2.

ņ	2	3	4			
4	16 /16.0			-		
5	25 /25.0					
6	36 /36.0	41 /41.0				
7	49 /49.0	63 /63.0				
8	64 /64.1	92 /91.8	106 /105.9			
9	81 /81.0	129 /129.0	171 /171.0	┛とく目とく目と	æ	900

Lets try it out some more

Given a poset *P* with base elements $\{1, \ldots, n\}$ its order polytope is

$$\{x \in \mathbb{R}^n : 0 \le x_i \le x_j \le 1 \forall i \le_P j\}.$$

< ロ > < 部 > < き > < き</p>

Given a poset *P* with base elements $\{1, \ldots, n\}$ its order polytope is

$$\{x \in \mathbb{R}^n : 0 \le x_i \le x_j \le 1 \forall i \le_P j\}.$$

Conjecture (Bogart, Chaves)

The order polytope is projectively unique if and only if there is no antichain bigger than two.

・ロン ・四 と ・ ヨン・ モン・

Given a poset *P* with base elements $\{1, \ldots, n\}$ its order polytope is

 $\{x \in \mathbb{R}^n : 0 \le x_i \le x_j \le 1 \forall i \le_P j\}.$

Conjecture (Bogart, Chaves)

The order polytope is projectively unique if and only if there is no antichain bigger than two.

We checked a few dozen examples and we saw $\dim(R(P)) = 0$ up to one decimal case everytime there was no large antichain.

ヘロア ヘロア ヘヨア ヘヨア

Given a poset *P* with base elements $\{1, \ldots, n\}$ its order polytope is

 $\{x \in \mathbb{R}^n : 0 \le x_i \le x_j \le 1 \forall i \le_P j\}.$

Conjecture (Bogart, Chaves)

The order polytope is projectively unique if and only if there is no antichain bigger than two.

We checked a few dozen examples and we saw $\dim(R(P)) = 0$ up to one decimal case everytime there was no large antichain.

We tried many three dimensional polytopes, projectively unique polytopes and pretty much everything we could got our hands on. All worked.

Conclusion

There are many more questions, and a more algebraic perspective.

< ロ > < 部 > < き > < き</p>

There are many more questions, and a more algebraic perspective.

For further reading:

- arXiv:1708.04739 The Slack Realization Space of a Polytope
- arXiv:1808.01692 Projectively unique polytopes and toric slack ideal

with Antonio Macchia, Rekha Thomas and Amy Wiebe.

• • • • • • • • • • • • • •

There are many more questions, and a more algebraic perspective.

For further reading:

- arXiv:1708.04739 The Slack Realization Space of a Polytope
- arXiv:1808.01692 Projectively unique polytopes and toric slack ideal

with Antonio Macchia, Rekha Thomas and Amy Wiebe.

Thank you